18 research outputs found

    Intermediate ferroelectric orthorhombic and monoclinic MB phases in [110]- electric field cooled Pb(Mg1/3Nb2/3)O3-30%PbTiO3 crystals

    Full text link
    Structural phase transformations of [110] electric field cooled Pb(Mg1/3Nb2/3)O3-30%PbTiO3 (PMN-30%PT) crystals have been performed by x-ray diffraction in a field-cooled (FC) condition. A phase sequence of cubic(C)-tetragonal(T)-orthorhombic (O)-monoclinic (MB) was found on field-cooling (FC); and a R-MB-O one was observed with increasing field beginning from the zero field-cooled (ZFC) condition at room temperature. The application of the [110] electric field induced a dramatic change in the phase sequence in the FC condition, compared to the corresponding data for PMN-30%PT crystals in a [001] field, which shows that the phase sequence in the FC condition is altered by the crystallographic direction along which a modest electric field (E) is applied. Only when E is applied along [110] are intermediate O and MB phases observed.Comment: 10 pages, 8 figure

    Neutron Diffraction Study of Field Cooling Effects on Relaxor Ferroelectrics Pb[(Zn_{1/3} Nb_{2/3})_{0.92} Ti_{0.08}] O_{3}

    Full text link
    High-temperature (T) and high-electric-field (E) effects on Pb[(Zn_{1/3} Nb_{2/3})_{0.92} Ti_{0.08}]O_3 (PZN-8%PT) were studied comprehensively by neutron diffraction in the ranges 300 <= T <= 550 K and 0 <= E <= 15 kV/cm. We have focused on how phase transitions depend on preceding thermal and electrical sequences. In the field cooling process (FC, E parallel [001] >= 0.5 kV/cm), a successive cubic (C) --> tetragonal (T) --> monoclinic (M_C) transition was observed. In the zero field cooling process (ZFC), however, we have found that the system does not transform to the rhombohedral (R) phase as widely believed, but to a new, unidentified phase, which we call X. X gives a Bragg peak profile similar to that expected for R, but the c-axis is always slightly shorter than the a-axis. As for field effects on the X phase, we found an irreversible X --> M_C transition via another monoclinic phase (M_A) as expected from a previous report [Noheda et al. Phys. Rev. Lett. 86, 3891 (2001)]. At a higher electric field, we confirmed a c-axis jump associated with the field-induced M_C --> T transition, which was observed by strain and x-ray diffraction measurements.Comment: 8 pages, 9 figures, revise

    Ordering Due to Quantum Fluctuations in Sr\u3csub\u3e2\u3c/sub\u3eCu\u3csub\u3e3\u3c/sub\u3eO\u3csub\u3e4\u3c/sub\u3eCl\u3csub\u3e2\u3c/sub\u3e

    Get PDF
    Sr2Cu3O4Cl2 has CuI and CuII subsystems, forming interpenetrating S=1/2 square lattice Heisenberg antiferromagnets. The classical ground state is degenerate, due to frustration of the intersubsystem interactions. Magnetic neutron scattering experiments show that quantum fluctuations cause a two dimensional Ising ordering of the CuII\u27s, lifting the degeneracy, and a dramatic increase of the CuI out-of-plane spin-wave gap, unique for order out of disorder. The spin-wave energies are quantitatively predicted by calculations which include quantum fluctuations

    Neutron Scattering Study of Sr\u3csub\u3e2\u3c/sub\u3eCu\u3csub\u3e3\u3c/sub\u3eO\u3csub\u3e4\u3c/sub\u3eCl\u3csub\u3e2\u3c/sub\u3e

    Get PDF
    We report a neutron scattering study on the tetragonal compound Sr2Cu3O4Cl2, which has two-dimensional (2D) interpenetrating CuI and CuII subsystems, each forming a S=1/2 square lattice quantum Heisenberg antiferromagnet (SLQHA). The mean-field ground state is degenerate, since the intersubsystem interactions are geometrically frustrated. Magnetic neutron scattering experiments show that quantum fluctuations lift the degeneracy and cause a 2D Ising ordering of the CuII subsystem. Due to quantum fluctuations a dramatic increase of the CuI out-of-plane spin-wave gap is also observed. The temperature dependence and the dispersion of the spin-wave energy are quantitatively explained by spin-wave calculations which include quantum fluctuations explicitly. The values for the nearest-neighbor superexchange interactions between the CuI and CuII ions and between the CuII ions are determined experimentally to be JI−II=−10(2) meV and JII=10.5(5) meV, respectively. Due to its small exchange interaction JII, the 2D dispersion of the CuII SLQHA can be measured over the whole Brillouin zone with thermal neutrons, and a dispersion at the zone boundary, predicted by theory, is confirmed. The instantaneous magnetic correlation length of the CuII SLQHA is obtained up to a very high temperature, T/JII≈0.75. This result is compared with several theoretical predictions as well as recent experiments on the S=1/2 SLQHA

    Space Demonstration of Two-Layer Pop-Up Origami Deployable Membrane Reflectarray Antenna by 3U CubeSat OrigamiSat-2

    Get PDF
    3U CubeSat OrigamiSat-2 demonstrates a 50-cm × 50-cm two-layer pop-up Origami deployable membrane reflectarray antenna in space. The membrane has small stowage volume and high gain even though it has low flatness because of a large enough antenna area to cover its un-flatness. C-band transmitter is equipped in the CubeSat and offers 20-Mbps amateur satellite communication. In 3U size, a 1-m length deployable gravity gradient mast and magnetic torquer are equipped to stabilize and control its attitude. A camera is attached to the satellite to measure the shape of the membrane antenna. OrigamiSat-2 was selected as the Innovative Satellite Technology Demonstration-4 by Japan Aerospace Exploration Agency (JAXA) and is going to be launched in 2024 by Epsilon Launch Vehicle

    SPIN CORRELATIONS IN HIGH Tc SUPERCONDUCTORS

    No full text
    A review is given of current neutron scattering experiments on La2-xSrxCuO4 and YBa2Cu3O6+x. Large single crystals have now been successfully grown for both of these high Tc superconductors and extensive measurements are being carried out on magnetic excitations for wide ranges of temperature and composition. A novel type of two-dimensional spin correlation is found with unusually large J2D ≈ 1 000 K
    corecore