1 research outputs found
Tectonic setting and petrogenesis of the Çelebi granitoid, (Kırıkkale-Turkey) and comparison with world skarn granitoids
Many studies have shown systematic correlations between the composition of plutons worldwide and the metal content of associated skarns. This is the first report of similar correlations between the composition of Çelebi granitoid and skarns of the Çelebi district in Central Anatolia, Turkey. The Çelebi district is well known for its polymetallic Fe-W and Cu vein ores. These are hosted by calcic skarn zones. Both exoskarns (pyroxene-garnet) and endoskarns (epidote-pyroxene) occur in the district formed mainly along the granitoid contacts and along the fractures within the marble. Based on mineralogy, petrology and geochemistry, two different igneous rocks were recognized in the Çelebi granitoid, referred to as leucocratic (felsic) and mesocratic (intermediate) Çelebi granitoid. The leucocratic Çelebi occurs as dominant rock type, and is classified as granite. The mesocratic Çelebi is not widespread and is classified as adamellite, tonalite, quartz monzonite and quartz monzodiorite. The mesocratic Çelebi has I-type characteristics, and have subalkaline, calc-alkaline and metaluminous characteristics like most worldwide skarn granitoids. A post-collisional tectonic setting is proposed on the basis of field evidence, the relative timing of intrusions with respect to metamorphic and obducted ophiolitic rocks and trace element geochemistry. The high abundance of La and Ce and the enrichment of V in mafic components suggest that Çelebi granitoids are formed by partial melting of mantle rocks, but have been contaminated by interaction with continental crust involving possible magma mixing processes (i.e. mixing of coexisting felsic and mafic magmas). In the district, the mesocratic type and mafic microgranular enclaves (MME) mainly within leucocratic type represent a mafic underplating magma that was mixed with and/or injected into felsic magma of the leucocratic type. The present study shows that Fe mineralization is associated with mesocratic Çelebi type, whereas W mineralization is associated with leucocratic type. Mesocratic Çelebi granitoid is significantly different from the worldwide average of plutons associated with Fe skarns. In particular, MgO vs. SiO2, FeOt+CaO+Na2O/K2O vs. SiO2, Fe2O3/Fe2O3+FeO vs. SiO2 and V vs. Ni vary from typical values (are lower than values typical for plutons associated with Fe skarns) for plutons associated with Fe skarns. Instead, it resembles the geochemical characteristics of plutons associated with worldwide Cu and possibly Au skarns. This suggests new exploration possibilities for copper and gold in the Çelebi district.The authors wish to thank two anonymous reviewers who have contributed much and improved the content and clarity of the paper. Funding by Scientific and Technical Research Council of Turkey (TÜBİTAK, grant code YDABÇAG-198Y098) is gratefully acknowledged