14 research outputs found

    Dravet syndrome

    Get PDF
    "Dravet syndrome" (DS) previously named severe myoclonic epilepsy of infancy (SMEI), or epilepsy with polymorphic seizures, is a rare disorder characterized by an early, severe, generalized, epileptic encephalopathy

    Microcephaly, sensorineural deafness and Currarino triad with duplication–deletion of distal 7q

    Get PDF
    Currarino syndrome (CS) is a peculiar form of caudal regression syndrome [also known as autosomal dominant sacral agenesis (OMIM no. 176450)] characterised by (1) partial absence of the sacrum with intact first sacral vertebra, (2) a pre-sacral mass and (3) anorectal anomalies (Currarino triad). We studied a 3-year-old girl with Currarino triad who had additional systemic features and performed array comparative genomic hybridisation to look for chromosomal abnormalities. This girl had the typical spectrum of anomalies of the CS including (a) partial sacral agenesis (hemisacrum with remnants of only sacral S1–S2 vertebrae and a residual S3 vertebral body) associated with complete coccygeal agenesis, (b) pre-intrasacral dermoid, (c) intra-dural lipoma, (d) ectopic anus and (e) tethered cord. She had, in addition, pre- and post-natal growth impairment (<3rd percentile), severe microcephaly (<−3 SD) with normal gyration pattern and lack of cortical thickening associated with a hypoplastic inferior vermis, facial dysmorphism, sensorineural deafness and decreased serum levels of IGF-1. A de novo 10.3-Mb duplication of 7q34–q35 and an 8.8-Mb deletion on 7q36 were identified in this patient. The Homeobox HLXB9 (CS) gene is contained within the deletion accounting for the CS phenotype including microcephaly. The spectrums of associated abnormalities in the IGF-1 deficiency growth retardation with sensorineural deafness and mental retardation syndrome (OMIM no. 608747) are discussed. To the best of our knowledge, this is the first reported case of a patient with distal 7q chromosomal imbalance and features of CS triad (including microcephaly) and the first documented case of a patient with normal gyration pattern microcephaly. The spectrum of associated anomalies in this newly recognised phenotype complex consists of growth failure, typical facial anomalies with additional (previously unreported) nervous system abnormalities (e.g. sensorineural deafness) and somatomedin C deficiency

    Long-term follow-up and novel genotype-phenotype analysis of monozygotic twins with ATP1A3 mutation in Alternating Hemiplegia of Childhood-2

    No full text
    Alternating Hemiplegia of Childhood (AHC) is a rare disorder characterized by frequent, transient attacks of hemiplegia involving either side of the body or both in association to several other disturbances including dystonic spells, abnormal ocular movements, autonomic manifestations, epileptic seizures and cognitive impairment. The clinical manifestations usually start before the age of 18 months. Two forms of the disorder known as AHC-1 (MIM#104290) and AHC-2 (MIM#614820) depends on mutations in ATP1A2 and ATP1A3 genes respectively, with over 75% of AHC caused by a mutation in the ATP1A3 gene. Herewith, we report serial clinical follow-up data of monozygotic (MZ) twin sisters, who presented in early life bath-induced dystonia, signs of acute encephalopathy at the age of 2 years, hemiplegic spells, and motor dysfunction after the age of 3 years, and in young/adult frequent episodes of headache with drastic reduction of paroxysmal motor attacks. The molecular analysis revealed a known pathogenic variant p.Asn773Ser (rs606231437) in ATP1A3 gene associated with an unusual and moderate AHC-2 phenotype, with mild cognitive impairment and lack of epilepsy. The aim of this study is to analyze the clinical phases of the MZ twins, and to investigate the novel genotype-phenotype correlation

    Alternating Hemiplegia of Childhood: neurological comorbidities and intrafamilial variability.

    Get PDF
    BACKGROUND: Alternating of Childhood (AHC) is an uncommon and complex disorder characterized by age of onset before 18 months with recurrent hemiplegia of one or either sides of the body or quadriplegia. The disorder is mainly caused by mutations in ATP1A3 gene, and to a lesser extent in ATP1A2 gene. In AHC neurological co-morbidities are various and frequently reported including developmental delay, epilepsy, tonic or dystonic spells, nystagmus,autonomic manifestations with intrafamilial variability. CASE PRESENTATION: Clinical and genetic findings of a couple of twins (Family 1: Case 1 and Case 2) and a couple of siblings (Family 2: Case 3 and Case 4) coming from two different Italian families affected by AHC were deeply examined. In twins of Family 1, a pathogenic variant in ATP1A3 gene (c.2318A>G) was detected. In siblings of Family 2, the younger brother showed a novel GRIN2A variant (c.3175 T > A), while the older carried the same GRIN2A variant, and two missense mutations in SCNIB (c.632 > A) and KCNQ2 (1870 G > A) genes. Clinical manifestations of the four affected children were reported along with cases of AHC drawn from the literature. CONCLUSIONS: Hemiplegic episode is only a sign even if the most remarkable of several and various neurological comorbidities in AHC affected individuals. Molecular analysis of the families here reported showed that clinical features of AHC may be also the result of an unexpected genetic heterogeneity

    Clinical and genetic analysis of a family with two rare reflex epilepsies

    Get PDF
    Purpose: To determine clinical phenotypes, evolution and genetic background of a large family with a combination of two unusual forms of reflex epilepsies. Method: Phenotyping was performed in eighteen family members (10 F, 8 M) including standardized EEG recordings with intermittent photic stimulation (IPS). Genetic analyses (linkage scans, Whole Exome Sequencing (WES) and Functional studies) were performed using photoparoxysmal EEG responses (PPRs) as affection status. Results: The proband suffered from speaking induced jaw-jerks and increasing limb jerks evoked by flickering sunlight since about 50 years of age. Three of her family members had the same phenotype. Generalized PPRs were found in seven members (six above 50 years of age) with myoclonus during the PPR. Evolution was typical: Sensitivity to lights with migraine-like complaints around adolescence, followed by jerks evoked by lights and spontaneously with dropping of objects, and strong increase of light sensitivity and onset of talking induced jaw jerks around 50 years. Linkage analysis showed suggestive evidence for linkage to four genomic regions. All photosensitive family members shared a heterozygous R129C mutation in the SCNM1 gene that regulates splicing of voltage gated ion channels. Mutation screening of 134 unrelated PPR patients and 95 healthy controls, did not replicate these findings. Conclusion: This family presents a combination of two rare reflex epilepsies. Genetic analysis favors four genomic regions and points to a shared SCNM1 mutation that was not replicated in a general cohort of photosensitive subjects. Further genetic studies in families with similar combination of features are warranted. (C) 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved
    corecore