26 research outputs found

    Ultrafine particle transport and deposition in a large scale 17-generation lung model

    Full text link
    © 2017 Elsevier Ltd To understand how to assess optimally the risks of inhaled particles on respiratory health, it is necessary to comprehend the uptake of ultrafine particulate matter by inhalation during the complex transport process through a non-dichotomously bifurcating network of conduit airways. It is evident that the highly toxic ultrafine particles damage the respiratory epithelium in the terminal bronchioles. The wide range of in silico available and the limited realistic model for the extrathoracic region of the lung have improved understanding of the ultrafine particle transport and deposition (TD) in the upper airways. However, comprehensive ultrafine particle TD data for the real and entire lung model are still unavailable in the literature. Therefore, this study is aimed to provide an understanding of the ultrafine particle TD in the terminal bronchioles for the development of future therapeutics. The Euler-Lagrange (E-L) approach and ANSYS fluent (17.2) solver were used to investigate ultrafine particle TD. The physical conditions of sleeping, resting, and light activity were considered in this modelling study. A comprehensive pressure-drop along five selected path lines in different lobes was calculated. The non-linear behaviour of pressure-drops is observed, which could aid the health risk assessment system for patients with respiratory diseases. Numerical results also showed that ultrafine particle-deposition efficiency (DE) in different lobes is different for various physical activities. Moreover, the numerical results showed hot spots in various locations among the different lobes for different flow rates, which could be helpful for targeted therapeutical aerosol transport to terminal bronchioles and the alveolar region

    Polydisperse Microparticle Transport and Deposition to the Terminal Bronchioles in a Heterogeneous Vasculature Tree

    Full text link
    © 2018, The Author(s). The atmospheric particles from different sources, and the therapeutic particles from various drug delivery devices, exhibit a complex size distribution, and the particles are mostly polydisperse. The limited available in vitro, and the wide range of in silico models have improved understanding of the relationship between monodisperse particle deposition and therapeutic aerosol transport. However, comprehensive polydisperse transport and deposition (TD) data for the terminal airways is still unavailable. Therefore, to benefit future drug therapeutics, the present numerical model illustrates detailed polydisperse particle TD in the terminal bronchioles for the first time. Euler-Lagrange approach and Rosin-Rammler diameter distribution is used for polydisperse particles. The numerical results show higher deposition efficiency (DE) in the right lung. Specifically, the larger the particle diameter (dp > 5 μm), the higher the DE at the bifurcation area of the upper airways is, whereas for the smaller particle (dp < 5 μm), the DE is higher at the bifurcation wall. The overall deposition pattern shows a different deposition hot spot for different diameter particle. These comprehensive lobe-specific polydisperse particle deposition studies will increase understanding of actual inhalation for particle TD, which could potentially increase the efficiency of pharmaceutical aerosol delivery at the targeted position of the terminal airways

    Washing treatment impact on print quality of screen printed knitted fabrics

    Get PDF
    The surface of textile materials is highly textured, commonly in non-uniform ways. Because of this texture effect, textile surface appears rougher and more porous than other printing substrates, which can cause excessive ink penetration during printing process. Next, washing process is very important factor because it influences ink characteristics on printed samples as well as structural changes of the textile substrate. The aim of this paper is to determine the influences of washing process and different mesh tread count used for printing on print quality. This will be obtained by using spectrophotometric analysis, and GLCM image processing method for print mottle estimation. The results of this research show that increasing number of washing processes leads to higher color differences reproduction color in comparison to printed materials before washing. It also shows that textile surface texture has a great influence on print mottle as well as that number of washing treatment series can generate variations of solid-tone print uniformity. Keywords: cotton, different thread count, GLCM, spectrophotometric analysis, series of washing process

    Artificial boundaries and formulations for the incompressible Navier-Stokes equations. Applications to air and blood flows.

    Get PDF
    International audienceWe deal with numerical simulations of incompressible Navier-Stokes equations in truncated domain. In this context, the formulation of these equations has to be selected carefully in order to guarantee that their associated artificial boundary conditions are relevant for the considered problem. In this paper, we review some of the formulations proposed in the literature, and their associated boundary conditions. Some numerical results linked to each formulation are also presented. We compare different schemes, giving successful computations as well as problematic ones, in order to better understand the difference between these schemes and their behaviours dealing with systems involving Neumann boundary conditions. We also review two stabilization methods which aim at suppressing the instabilities linked to these natural boundary conditions

    SARS CoV-2 aerosol: How far it can travel to the lower airways?

    Full text link
    The recent outbreak of the SARS CoV-2 virus has had a significant effect on human respiratory health around the world. The contagious disease infected a large proportion of the world population, resulting in long-term health issues and an excessive mortality rate. The SARS CoV-2 virus can spread as small aerosols and enters the respiratory systems through the oral (nose or mouth) airway. The SARS CoV-2 particle transport to the mouth-throat and upper airways is analyzed by the available literature. Due to the tiny size, the virus can travel to the terminal airways of the respiratory system and form a severe health hazard. There is a gap in the understanding of the SARS CoV-2 particle transport to the terminal airways. The present study investigated the SARS CoV-2 virus particle transport and deposition to the terminal airways in a complex 17-generation lung model. This first-ever study demonstrates how far SARS CoV-2 particles can travel in the respiratory system. ANSYS Fluent solver was used to simulate the virus particle transport during sleep and light and heavy activity conditions. Numerical results demonstrate that a higher percentage of the virus particles are trapped at the upper airways when sleeping and in a light activity condition. More virus particles have lung contact in the right lung than the left lung. A comprehensive lobe specific deposition and deposition concentration study was performed. The results of this study provide a precise knowledge of the SARs CoV-2 particle transport to the lower branches and could help the lung health risk assessment system

    Computational Model of Airflow in Upper 17 Generations of Human Respiratory Tract

    Full text link
    Computational fluid dynamics (CFD) studies of airflow in a digital reference model of the 17-generation airway (bronchial tree) were accomplished using the FLUENT® computational code, based on the anatomical model by Schmidt et al. [2004. A digital reference model of the human bronchial tree. Computerized Medical Imaging and Graphics 28, 203–211]. The lung model consists of 6.744×106 unstructured tetrahedral computational cells. A steady-state airflow rate of 28.3 L/min was used to simulate the transient turbulent flow regime using a large eddy simulation (LES) turbulence model. This CFD mesh represents the anatomically realistic asymmetrical branching pattern of the larger airways. It is demonstrated that the nature of the secondary vortical flows, which develop in such asymmetric airways, varies with the specific anatomical characteristics of the branching conduits

    Pulmonary aerosol transport and deposition analysis in upper 17 generations of the human respiratory tract

    Full text link
    © 2017 Elsevier Ltd The major problem in understanding the therapeutically targeted drug delivery system in the deeper airways of the human lung is the lack of adequate data of particle transport and deposition (TD) in the transitional and respiratory zones (deeper airways) of the human lung. An understanding of the morphometry of the pulmonary airways and the lungs forms the primary step in a study of pulmonary aerosol deposition. The present study is the first-ever approach to explore the pulmonary aerosol TD in a digital 17-generation human pulmonary airway model. The present numerical study achieved the lack of the particle TD data in the deeper airways of the human lung. This paper presents a 3-D (3-dimensional) CFD (Computational Fluid Dynamics) study of an anatomically realistic 17-generation lung bronchial tree model based on the high-resolution computer tomography (HRCT) data by Schmidt et al. (2004). Physical morphometry is necessary for sufficiently calculating air and particle dynamics in human pulmonary airways with available data on a large number of generations. A Lagrangian-based Discrete Phase Model (DPM) is used to study the particle TD in the 17-generation of the lung airways. The numerical results demonstrate that inertial impaction is dominant in the upper airways and a large percentage of particles is deposited in the upper airways. The numerical results also illustrate that a large percentage of smaller diameter particles leaves through the airway outlet boundary at the 17th generation irrespective of breathing patterns. The escaped particles are considered to continue to follow the airway flow field further downstream after the 17th generation till the 23rd generation and some of them will reach the alveolar sacs region. This computational model could potentially aid in overcoming the nanobiotechnology toxicity problem for drug delivery in the deeper airways

    Euler-Lagrange Prediction of Diesel-Exhaust Polydisperse Particle Transport and Deposition in Lung: Anatomy and Turbulence Effects

    No full text
    In clinical assessments, the correlation between atmospheric air pollution and respiratory damage is highly complicated. Epidemiological studies show that atmospheric air pollution is largely responsible for the global proliferation of pulmonary disease. This is particularly significant, since most Computational Fluid Dynamics (CFD) studies to date have used monodisperse particles, which may not accurately reflect realistic inhalation patterns, since atmospheric aerosols are mostly polydisperse. The aim of this study is to investigate the anatomy and turbulent effects on polydisperse particle transport and deposition (TD) in the upper airways. The Euler-Lagrange approach is used for polydisperse particle TD prediction in both laminar and turbulent conditions. Various anatomical models are adopted to investigate the polydisperse particle TD under different flow conditions. Rossin-Rammler diameter distribution is used for the distribution of the initial particle diameter. The numerical results illustrate that airflow rate distribution at the right lung of a realistic model is higher than a non-realistic model. The CFD study also shows that turbulence effects on deposition are higher for larger diameter particles than with particles of smaller diameter. A significant amount of polydisperse particles are also shown to be deposited at the tracheal wall for CT-based model, whereas particles are mostly deposited at the carinal angle for the non-realistic model. A comprehensive, polydisperse particle TD analysis would enhance understanding of the realistic deposition pattern and decrease unwanted therapeutic aerosol deposition at the extrathoracic airways

    How severe acute respiratory syndrome coronavirus-2 aerosol propagates through the age-specific upper airways

    Full text link
    The recent outbreak of the COVID-19 causes significant respirational health problems, including high mortality rates worldwide. The deadly corona virus-containing aerosol enters the atmospheric air through sneezing, exhalation, or talking, assembling with the particulate matter, and subsequently transferring to the respiratory system. This recent outbreak illustrates that the severe acute respiratory syndrome (SARS) coronavirus-2 is deadlier for aged people than for other age groups. It is evident that the airway diameter reduces with age, and an accurate understanding of SARS aerosol transport through different elderly people's airways could potentially help the overall respiratory health assessment, which is currently lacking in the literature. This first-ever study investigates SARS COVID-2 aerosol transport in age-specific airway systems. A highly asymmetric age-specific airway model and fluent solver (ANSYS 19.2) are used for the investigation. The computational fluid dynamics measurement predicts higher SARS COVID-2 aerosol concentration in the airway wall for older adults than for younger people. The numerical study reports that the smaller SARS coronavirus-2 aerosol deposition rate in the right lung is higher than that in the left lung, and the opposite scenario occurs for the larger SARS coronavirus-2 aerosol rate. The numerical results show a fluctuating trend of pressure at different generations of the age-specific model. The findings of this study would improve the knowledge of SARS coronavirus-2 aerosol transportation to the upper airways which would thus ameliorate the targeted aerosol drug delivery system
    corecore