5 research outputs found

    Genome-wide DNA methylation is predictive of outcome in juvenile myelomonocytic leukemia.

    No full text
    Juvenile myelomonocytic leukemia (JMML) is a myeloproliferative disorder of childhood caused by mutations in the Ras pathway. Outcomes in JMML vary markedly from spontaneous resolution to rapid relapse after hematopoietic stem cell transplantation. Here, we hypothesized that DNA methylation patterns would help predict disease outcome and therefore performed genome-wide DNA methylation profiling in a cohort of 39 patients. Unsupervised hierarchical clustering identifies three clusters of patients. Importantly, these clusters differ significantly in terms of 4-year event-free survival, with the lowest methylation cluster having the highest rates of survival. These findings were validated in an independent cohort of 40 patients. Notably, all but one of 14 patients experiencing spontaneous resolution cluster together and closer to 22 healthy controls than to other JMML cases. Thus, we show that DNA methylation patterns in JMML are predictive of outcome and can identify the patients most likely to experience spontaneous resolution

    The Genomic Landscape of Juvenile Myelomonocytic Leukemia

    No full text
    Juvenile myelomonocytic leukemia (JMML) is a myeloproliferative neoplasm (MPN) of childhood with a poor prognosis. Mutations in NF1, NRAS, KRAS, PTPN11 and CBL occur in 85% of patients, yet there are currently no risk stratification algorithms capable of predicting which patients will be refractory to conventional treatment and therefore be candidates for experimental therapies. In addition, there have been few other molecular pathways identified aside from the Ras/MAPK pathway to serve as the basis for such novel therapeutic strategies. We therefore sought to genomically characterize serial samples from patients at diagnosis through relapse and transformation to acute myeloid leukemia in order to expand our knowledge of the mutational spectrum in JMML. We identified recurrent mutations in genes involved in signal transduction, gene splicing, the polycomb repressive complex 2 (PRC2) and transcription. Importantly, the number of somatic alterations present at diagnosis appears to be the major determinant of outcome
    corecore