17 research outputs found

    The role of rewards and demands in burnout among surgical nurses

    Get PDF
    Job rewards have both, an intrinsic and an extrinsic motivational potential, and lead to employees’ development as well as help them to achieve work goals. Rewards can balance job demands and protect from burnout. Due to changes on the labour market, new studies are needed. The aim of our study was to examine the role of demands and individual rewards (and their absence) in burnout among surgical nurses. Materials and Methods: The study was conducted in 2009 and 2010 with 263 nurses who worked in surgical wards and clinics in hospitals in Southern Poland. The hypotheses were tested by the use of measures of demands and rewards (Effort-Reward Imbalance Questionnaire by Siegrist) and burnout syndrome (Maslach Burnout Inventory). A cross-sectional, correlational study design was applied. Results: Nurses experienced the largest deficiencies in salary and prestige. Exhaustion was explained by stronger demands and lack of respect (large effect). Depersonalization was explained by stronger demands, lack of respect and greater job security (medium effect). Reduced personal achievement was explained by more demands and greater job security (small effect). Conclusions: Excessive demands and lack of esteem are key reasons for burnout among surgical nurses. Job security can increase burnout when too many resources are invested and career opportunities do not appear. These results may help to improve human resource management in the healthcare sector

    Behavioral and Autonomic Responses to Acute Restraint Stress Are Segregated within the Lateral Septal Area of Rats

    Get PDF
    Background: The Lateral Septal Area (LSA) is involved with autonomic and behavior responses associated to stress. In rats, acute restraint (RS) is an unavoidable stress situation that causes autonomic (body temperature, mean arterial pressure (MAP) and heart rate (HR) increases) and behavioral (increased anxiety-like behavior) changes in rats. The LSA is one of several brain regions that have been involved in stress responses. The aim of the present study was to investigate if the neurotransmission blockade in the LSA would interfere in the autonomic and behavioral changes induced by RS. Methodology/Principal Findings: Male Wistar rats with bilateral cannulae aimed at the LSA, an intra-abdominal datalogger (for recording internal body temperature), and an implanted catheter into the femoral artery (for recording and cardiovascular parameters) were used. They received bilateral microinjections of the non-selective synapse blocker cobalt chloride (CoCl2, 1 mM / 100 nL) or vehicle 10 min before RS session. The tail temperature was measured by an infrared thermal imager during the session. Twenty-four h after the RS session the rats were tested in the elevated plus maze (EPM). Conclusions/Significance: Inhibition of LSA neurotransmission reduced the MAP and HR increases observed during RS. However, no changes were observed in the decrease in skin temperature and increase in internal body temperature observed during this period. Also, LSA inhibition did not change the anxiogenic effect induced by RS observed 24 h later in the EPM. The present results suggest that LSA neurotransmission is involved in the cardiovascular but not the temperatur

    Cardiovascular changes during focal cerebral ischemia in rats.

    No full text

    Validation of transit-time flowmetry for chronic measurements of regional blood flow in resting and exercising rats

    No full text
    The objective of the present study was to validate the transit-time technique for long-term measurements of iliac and renal blood flow in rats. Flow measured with ultrasonic probes was confirmed ex vivo using excised arteries perfused at varying flow rates. An implanted 1-mm probe reproduced with accuracy different patterns of flow relative to pressure in freely moving rats and accurately quantitated the resting iliac flow value (on average 10.43 ± 0.99 ml/min or 2.78 ± 0.3 ml min-1 100 g body weight-1). The measurements were stable over an experimental period of one week but were affected by probe size (resting flows were underestimated by 57% with a 2-mm probe when compared with a 1-mm probe) and by anesthesia (in the same rats, iliac flow was reduced by 50-60% when compared to the conscious state). Instantaneous changes of iliac and renal flow during exercise and recovery were accurately measured by the transit-time technique. Iliac flow increased instantaneously at the beginning of mild exercise (from 12.03 ± 1.06 to 25.55 ± 3.89 ml/min at 15 s) and showed a smaller increase when exercise intensity increased further, reaching a plateau of 38.43 ± 1.92 ml/min at the 4th min of moderate exercise intensity. In contrast, exercise-induced reduction of renal flow was smaller and slower, with 18% and 25% decreases at mild and moderate exercise intensities. Our data indicate that transit-time flowmetry is a reliable method for long-term and continuous measurements of regional blood flow at rest and can be used to quantitate the dynamic flow changes that characterize exercise and recover
    corecore