7,001 research outputs found

    Initial states and decoherence of histories

    Full text link
    We study decoherence properties of arbitrarily long histories constructed from a fixed projective partition of a finite dimensional Hilbert space. We show that decoherence of such histories for all initial states that are naturally induced by the projective partition implies decoherence for arbitrary initial states. In addition we generalize the simple necessary decoherence condition [Scherer et al., Phys. Lett. A (2004)] for such histories to the case of arbitrary coarse-graining.Comment: 10 page

    Causality in Time-Neutral Cosmologies

    Get PDF
    Gell-Mann and Hartle (GMH) have recently considered time-neutral cosmological models in which the initial and final conditions are independently specified, and several authors have investigated experimental tests of such models. We point out here that GMH time-neutral models can allow superluminal signalling, in the sense that it can be possible for observers in those cosmologies, by detecting and exploiting regularities in the final state, to construct devices which send and receive signals between space-like separated points. In suitable cosmologies, any single superluminal message can be transmitted with probability arbitrarily close to one by the use of redundant signals. However, the outcome probabilities of quantum measurements generally depend on precisely which past {\it and future} measurements take place. As the transmission of any signal relies on quantum measurements, its transmission probability is similarly context-dependent. As a result, the standard superluminal signalling paradoxes do not apply. Despite their unusual features, the models are internally consistent. These results illustrate an interesting conceptual point. The standard view of Minkowski causality is not an absolutely indispensable part of the mathematical formalism of relativistic quantum theory. It is contingent on the empirical observation that naturally occurring ensembles can be naturally pre-selected but not post-selected.Comment: 5 pages, RevTeX. Published version -- minor typos correcte

    Current Algebra: Quarks and What Else?

    Get PDF
    After receiving many requests for reprints of this article, describing the original ideas on the quark gluon gauge theory, which we later named QCD, we decided to place the article in the e-Print archive

    A simple necessary decoherence condition for a set of histories

    Full text link
    Within the decoherent histories formulation of quantum mechanics, we investigate necessary conditions for decoherence of arbitrarily long histories. We prove that fine-grained histories of arbitrary length decohere for all classical initial states if and only if the unitary evolution preserves classicality of states (using a natural formal definition of classicality). We give a counterexample showing that this equivalence does not hold for coarse-grained histories.Comment: 11 pages,LaTe

    Quasiclassical Coarse Graining and Thermodynamic Entropy

    Get PDF
    Our everyday descriptions of the universe are highly coarse-grained, following only a tiny fraction of the variables necessary for a perfectly fine-grained description. Coarse graining in classical physics is made natural by our limited powers of observation and computation. But in the modern quantum mechanics of closed systems, some measure of coarse graining is inescapable because there are no non-trivial, probabilistic, fine-grained descriptions. This essay explores the consequences of that fact. Quantum theory allows for various coarse-grained descriptions some of which are mutually incompatible. For most purposes, however, we are interested in the small subset of ``quasiclassical descriptions'' defined by ranges of values of averages over small volumes of densities of conserved quantities such as energy and momentum and approximately conserved quantities such as baryon number. The near-conservation of these quasiclassical quantities results in approximate decoherence, predictability, and local equilibrium, leading to closed sets of equations of motion. In any description, information is sacrificed through the coarse graining that yields decoherence and gives rise to probabilities for histories. In quasiclassical descriptions, further information is sacrificed in exhibiting the emergent regularities summarized by classical equations of motion. An appropriate entropy measures the loss of information. For a ``quasiclassical realm'' this is connected with the usual thermodynamic entropy as obtained from statistical mechanics. It was low for the initial state of our universe and has been increasing since.Comment: 17 pages, 0 figures, revtex4, Dedicated to Rafael Sorkin on his 60th birthday, minor correction

    Adaptive Coarse Graining, Environment, Strong Decoherence, and Quasiclassical Realms

    Get PDF
    Three ideas are introduced that when brought together characterize the realistic quasiclassical realms of our quantum universe as particular kinds of sets of alternative coarse-grained histories defined by quasiclassical variables: (1) Branch dependent adaptive coarse grainings that can be close to maximally refined and can simplify calculation. (2) Narrative coarse grainings that describe how features of the universe change over time and allow the construction of an environment. (3) A notion of strong decoherence that characterizes realistic mechanisms of decoherence.Comment: 11 pages, revtex
    • …
    corecore