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I. Introduction

For more than a decade, we particle theorists have been squeezing predictions out of a mathe-

matical field theory model of the hadrons that we don’t fully believe – a model containing a

triple of spin 1/2 fields coupled universally to a neutral spin 1 field, that of the “gluon”. In

recent years, the triplet is usually taken to be the quark triplet, and it is supposed that there is a

transformation, presumably unitary, that effectively converts the current quarks of the relativi-

stic model into the constituent quarks of the naive quark model of baryon and meson spectrum

and couplings.

We abstract results that are true in the model to all orders of the gluon coupling and postulate

that they are really true of the electromagnetic and weak currents of hadrons to all orders of

the strong interaction. In this way we build up a system of algebraic relations, so–called current

algebra, and this algebraic system gets larger and larger as we abstract more and more proper-

ties of the model.

In section III, we review briefly the various stages in the history of current algebra. The older

abstractions are correct to each order of renormalized perturbation theory in the model1), while

the more recent ones, those of light cone current algebra, are true to all orders only formally3).

We describe the results of current algebra2) in terms of commutators on or near a null plane,

say x3 + x0 = 0.

In section IV, we attempt to describe, in a little more detail, using null plane language, the sys-

tem of commutation relations valid in a free quark model that are known to remain unchanged

(at least formally) when the coupling to a vector “gluon” is turned on. These equations give

us a formidable body of information about the hadrons and their currents, supposedly exact as

far as the strong interaction is concerned, for comparison with experiment. However, they by

no means exhaust the degrees of freedom present in the model; they do not yield an algebraic

system large enough to contain a complete description of the hadrons. In an Appendix, the

equations of Section IV are related to form factor algebra.

In Section V, we discuss how further commutation of the physical quantities arising from light

cone algebra leads, in the model field theory, to results dependent on the coupling constant,

to formulae in which gluon field strength operators occur in bilocal current operators prolifer-

ate. Only when these relations are included do we finally get an algebraic system that contains

nearly all the degrees of freedom of the model. We may well ask, however, whether it is the

right algebraic system. We discuss briefly how the complete description of the hadrons involves

the specification and slight enlargement of this algebraic system, the choice of representation of

the algebra that corresponds to the complete set of hadron states, and the form of the mass or

the energy operator, which must be expressible in terms of the algebra when it is complete. The

choice of representation may be dictated by the algebra, and if so that would justify the use of

a quark and gluon Fock space by some “parton” theorists.

Finally, in Section VI, it is suggested that perhaps there are alternatives to the vector gluon

model as sources of information or as clues for the construction of the true hadron theory. As-

suming we have described the quark part of the model correctly, can we replace the gluons

by something else? The “string” or “rubber band” formulation, in ordinary coordinate space,

2



of the zeroth approximation to the dual resonance model, is suggested as an interesting example.

Before embarking on our discussion of current algebra, we discuss in Section II the crucial

point that quarks are probably not real particles and probably obey special statistics, along

with related matters concerning the gluons of the field theory model.

II. FICTITIOUS QUARKS AND “GLUONS” AND THEIR STATISTICS

We assume here that quarks do not have real counterparts that are detectable in iso-
lation in the laboratory – they are supposed to be permanently bound inside the mesons
and baryons. In particular, we assume that they obey the special quark statistics, equi-
valent to “para–Fermi statistics of rank three” plus the requirement that mesons always
be bosons and baryons fermions. The simplest description of quark statistics involves
starting with three triplets of quarks, called red, white, and blue, distinguished only by
the parameter referred to as color. These nine mathematical entities all obey Fermi–Dirac
statistics, but real particles are required to be singlets with respect to the SU3 of color,
that is to say combinations acting like

q̄RqR + q̄BqB + q̄W qW or qRqBqW −qBqRqW −qRqW qB −qW qBqR +qW qRqB +qBqW qR . (1)

The assumption of quark statistics has been common for many years, although not ne-
cessarily described in quite this way, and it has always had the following advantage: The
constituent quarks as well as current quarks would obey quark statistics, since the trans-
formation between them would not affect statistics, and the constituent quark model
would then assign the lowest-lying baryon states (56 representation) to a symmetrical
spatial configuration, as befits a very simple model.
Nowadays there is a further advantage. Using the algebraic relations abstracted formally
from the quark–gluon model, one obtains a formula for the π0 decay amplitude in the
PCAC approximation, one that works beautifully for quark statistics but would fail by a
factor 3 for a single Fermi–Dirac triplet4).
We have the option, no matter how far we go in abstracting results from a field theory
model, of treating only color singlet operators. All the currents, as well as the stress–
energy–momentum tensor Θµν that couples to gravity and defines the theory, are color
singlets. We may, if we like, go further and abstract operators with three quark fields,
or four quark fields and an antiquark field, and so forth, in order to connect the vacuum
with baryon states, but we still need select only those that are color singlets in order to
connect all physical hadron states with one another.
It might be a convenience to abstract quark operators themselves, or other non–singlets
with respect to color, along with fictitious sectors of Hilbert space with triality non–zero,
but it is not a necessity. It may not even be much of a convenience, since we would then,
in describing the spatial and temporal variation of these fields, be discussing a fictitious
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spectrum for each fictitious sector of Hilbert space, and we probably don’t want to load
ourselves with so much spurious information.
We might eventually abstract from the quark–vector–gluon field theory model enough
algebraic information about the color singlet operators in the model to describe all the
degrees of freedom that are present.
For the real world of baryons and mesons, there must be a similar algebraic system, which
may differ in some respects from that of the model, but which is in principle knowable.
The operator Θµν could then be expressed in terms of this system, and the complete
Hilbert space of baryons and mesons would be a representation of it. We would have
a complete theory of the hadrons and their currents, and we need never mention any
operators other than color singlets.
Now the interesting question has been raised lately whether we should regard the gluons
as well as the quarks as being non–singlets with respect to color5). For example, they
could form a color octet of neutral vector fields obeying the Yang–Mills equations. (We
must, of course, consider whether it is practical to add a common mass term for the gluon
in that case – such a mass term would show up physically as a term in Θµν other than
the quark bare mass term. In the past, we have referred to such an additional term that
violates scale invariance, but does not violate SU3 × SU3 as δ and its dimension as lδ.
Nowadays, ways of detecting expected values of δ are emerging.)6).
If the gluons of the model are to be turned into color octets, then an annoying asymmetry
between quarks and gluons is removed, namely that there is no physical channel with
quark quantum numbers, while gluons communicate freely with the channel containing
the ω and φ mesons. (In fact, this communication of an elementary gluon potential with
the real current of baryon number makes it very difficult to believe that all the formal
relations of light cone current algebra could be true even in a “finite” version of singlet
neutral vector gluon field theory.)
If the gluons become a color octet, then we do not have to deal with a gluon field strength
standing alone, only with its square, summed over the octet, and with quantities like
q̄ (∂µ − igoABAµ) q, where the σ’s are the eight 3× 3 color matrices for the quark and the
B’s are the eight gluon potentials.

Now, suppose we look at such a model field theory, with colored quarks and colored
gluons, including the stress–energy–momentum tensor. Basically the questions we are
asking are the following:

1. Up to what point does the algebraic system of the color singlet operators for the
real hadrons resemble that in the model? What is it in fact?

2. Up to what point does the representation of the algebraic system by the Hilbert
space of physical hadron states resemble that in the model? What is it in fact?

3. Up to what point does Θµν , expressed in term of the algebraic system, resemble
that in the model? What is it in fact?
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The measure of our ignorance is that for all we know, the algebra of color singlet op-
erators, the representation, and even the form of Θµν could be exactly as in the model!
We don’t yet know how to extract enough consequences of the model to have a decisive
confrontation with experiment, nor can we solve the formal equations for large g.
If we were solving the equations of a model, the first question we would ask is: Are the
quarks really kept inside or do they escape to infinity? By restricting physical states and
interesting operators to color singlets only, we have to some extent begged that question.
But it re-emerges in the following form:
With a given algebraic system for the color singlet operators, can we find a locally causal
Θµν that yields a spectrum corresponding to mesons and baryons and antibaryons and
combinations thereof, or do we find a spectrum (in the color singlet states) that looks like
combinations of free quarks and antiquarks and gluons?
In the next three Sections we shall usually treat the vector gluon, for convenience, as a
color singlet.

III. REVIEW OF CURRENT ALGEBRA

In this section we sketch the gradual extension of algebraic results abstracted from free
quark theory that remain true, either in renormalized perturbation theory or else only
formally, when the coupling to a neutral vector gluon field is turned on.
The earlier abstractions were of equal–time commutation relations of current components.
It was soon found that useful sum rules could best be derived from these by taking matrix
elements between hadron states of equal P3 as P3 → ∞, selecting the “gluon” components
of the currents (those with matrix elements finite in this limit rather than tending to zero),
and adding the postulate that, in the sum over intermediate states in the commutator,
only states of finite mass need be considered. Thus formulae like the Adler–Weisberger
and Cabibbo–Radicati sum rules were obtained and roughly verified by experiment.
Nowadays, the same procedure is usually accomplished in a slightly different way that is
a bit cleaner – the hadron momenta are left finite instead of being boosted by a limit of
Lorentz transformations, and the equal time surface is transformed by a corresponding
limit of Lorentz transformations into a null plane, with x3 +x0 = constant, say zero. The
hypothesis of saturation by finite mass intermediate states is replaced by the hypothesis
that the commutation rules of good components can be abstracted from the model not
only on an equal time plane, but on a null plane as well7,8).
In the last few years, the process of abstraction has been extended to a large class of
algebraic relations (those of “light cone current algebra”) that are true only formally in
the model, but fail to each order of renormalized perturbation theory - they would be true
to each order if the model were super–renormalizable. The motivation has been supplied
by the compatibility of the deep inelastic electron scattering experiments performed at
SLAC with the scaling predictions of Bjorken, which is the most basic feature of “light
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cone current algebra”. The Bjorken scaling limit q2 → ∞, 2p · q → ∞, ξ ≡ q2/ (−2p · q)
finite) corresponds in coordinate space to the singularity on the light cone (x − y)2 = 0
of the current commutator [j(x), j(y)], and the relations of light cone current algebra are
obtained by abstracting the leading singularity on the light cone from the field theory
model. The singular function of x− y is multiplied by a bilocal current operator Θ (x, y)
that reduces to a familiar local current as x− y → 0. The Bjorken scaling functions F (ξ)
are Fourier transforms of the expected values of the bilocal operators. Numerous predic-
tions emerge from the relations abstracted from the quark–gluon model for deep inelastic
and neutrino cross–sections. For example, the spin 1/2 character for the quanta bearing
the charge in the model is reflected in the prediction σL/σT → 0, while the charges of the
quarks are reflected in the inequalities 1/4sF en (ξ) /F ep(ξ) ≤ 4. So far there is no clear
sign of my contradiction between the formulae and the experimental results.
We may go further and abstract from the model also the light–cone commutators of bilocal
currents, in the limit in which all the intervals among the four points approach zero, that
is to say, when all four points tend to lie on a light–like line. The same bilocal operators
then recur as coefficients of the singularity, and the algebraic system closes.
The light cone results can be reformulated in terms of the null plane. We consider a
commutator of local currents at two points x and y and allow the two points to approach
the same null plane, say

x+ ≡ x3 + x0 = 0, y+ ≡ y3 + y0 = 0 (2)

As mentioned above, when both current components are “good”, we obtain a local com-
mutation relation on the null plane, yielding another good component, or else zero. But
when neither component is good, there is a singularity of the form

δ (x+ − y+) (3)

and the coefficient is a bilocal current on the null plane. It is this singularity, arising from
the light–cone singularity, that gives the Bjorken scaling.
On the null plane, with x+ = 0, the three coordinates are the transverse spacelike co-
ordinates x1 and x2 (called x⊥) and the lightlike coordinate x− ≡ x3 − x0. Our bilocal
currents O (u, y) on the nullplane are functions of four coordinates: x−, y− and x⊥ = y⊥,
since the interval between x and y is lightlike.
We may now consider the commutator of two bilocal currents defined on neighboring null
planes (in each case with a lightlike interval between the two arguments of the bilocal cur-
rent). Again, when neither current component is good, there is a δ–function singularity
of the spacing between the two null planes and the coefficient is a bilocal current defined
on the common limiting null plane. In this language, as before in the light cone language,
the system of bilocal currents closes.
We may commute two good components of bilocal currents on the same null plane, and,
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as for local currents, we obtain a good component on the right–hand side, without any
δ–function singularity at coincidence of the two null planes. Thus the good components
of the bilocal currents O(u, y) form a Lie algebra on the null plane, a generalization of
the old Lie algebra of local good components on the null plane (recovered by putting
x− = y−).
Now, how far can we generalize this new Lie algebra on the null plane and still obtain
exact formulae, formally true to all orders in the coupling constant, but independent of
it, so that free quark formulae apply?
In the next section, we take up that question, but first we summarize the situation of
current algebra on and near the null plane.

IV. SUMMARY OF LIGHT CONE AND NULL PLANE RESULTS

Let us now be a little more explicit. We are dealing with 144 bilocal quantities Fjα,Fjα, Sj, Pj

and Tjαβ all functions of x − y with (x − y)2 → 0. Let us select the 3–direction for our
null planes. Then in the model we can set B+ ≡ B3 + B0 = 0 for the gluon potential

by a choice of gauge. The gauge–invariance factor exp ig
x
∫

y
B · dl for a straight line path

on a null plane is just exp
[

ig
2
B+ (x− − y−)

]

= 1. Thus we have simple correspondences
between our quantities and operators in the model:

Fjα(x, y) ∼
i

2
q̄(x)λjγαq(y), etc.

and we have introduced the notation D
(

x, y, i
2
λj γα

)

, etc., where

D(x, y, G) ∼ q̄(x)Gq(y) ∼ q+(x)(βG)q(y) . (4)

We are dealing with D(x, y, G) for every (12 × 12) matrix G, with

F5
jα(x, y) = D

(

x, y,
i

2
λjγα, γ5

)

Sj(x, y) = D
(

x, y,
1

2
λj

)

, (5)

Pj(x, y) = D
(

x, y,
i

2
λj γ5

)

, and Tjαβ(x, y) = D
(

x, y,
i

2
λj σαβ

)

. (6)

The good components, in the old equal–time P3 → ∞ language, were those with finite
matrix elements between states of finite mass and P3 → ∞. By contrast, bad components
were those with matrix elements going like P3

−1 and terrible components those with ma-
trix elements going like P3

−2.
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In the null plane language, good components are those for which βG is proportional
to 1 + α3; thus the 36 good components are Fj+,F5

j+, Tj1+, Tj2+ for j = 0 . . . 8. The
terrible components are those for which βG is proportional to 1−α3, hence Fj−,F5

j−, Tj1,
and Tj2−. The rest are bad; they have βG anticommuting with α3 so that α3 is -1 on the
left and +1 on the right or vice versa.
Now the leading light cone singularity in the commutator of two bilocals is just given by
the formula

[(D (x, y, G) ,D (u, v, G′))] =̂D (x, v, iGγµG
′) ∂µ∆(y − u) −D (u, y, iG′γµG) ∂µ∆(v − x),

(7)

with ∆(z) = (2π)−1 ε (z0) δ (z2).

When we commute two operators with coordinates lying on neighboring null planes with
separation ∆x+, a singularity of the type δ (∆x+) appears (as we have mentioned in Sec-
tion III) multiplied by a bilocal operator, with coordinates lying in the common null plane
as ∆x+ → 0, and it is this term that gives rise to Bjorken scaling. The term in question
comes from the component ∂

∂z+
∆(z) in ∂µ∆(z), and is thus multiplied by D (x, ν, iGγ+G′)

and D (u, y, iG′γ+G). Now β (iGγ+G′) = (βG) (1 − α3) (βG′), so it is clear that the sin-
gular Bjorken scaling term vanishes for good–good and good–bad commutators. In the
case of the other components, we have, schematically, [bad, bad] → good, [bad, terrible]
→ bad, and [terrible, terrible] → terrible for the Bjorken singularity.
The vector and axial vector local currents Fjα(x, x) and F5

jα(x, x) occur, of course, in
the electromagnetic and weak interactions. The local scalar and pseudoscalar currents
occur in the divergences of the non–conserved vector and the axial vector currents, with
coefficients that are linear combinations of the bare quark masses, mu, md and ms, treated
as a diagonal matrix. (Here mu would equal md if isotopic spin conservation were perfect,
while the departure of ms from the common value of mu and md is what gives rise to SU3

splitting; the non–vanishing of m is what breaks SU3 × SU3).
We see that all the 144 bilocals are physically interesting, including the tensor currents,
because they all occur in the commutators of these local V, A, S, and P densities as
coefficients of the δ (∆x+) singularity. Commuting a local scalar with itself or a local
pseudoscalar with itself leads to the same bilocal as commuting a transverse component
of a vector with itself, and thus the light cone commutator of current divergences is pre-
dicted to lead to Bjorken scaling functions that are proportional to those observed in
the light cone commutation of currents, while the coefficients permit the experimental
determination of the squares of the quark bare masses. Unfortunately, the relevant expe-
riments are difficult. (The finiteness of the bare masses, as compared with the divergences
encountered term in renormalized perturbation theory in a gluon model, presumably has
the same origin as the scaling, which also fails term by term in renormalized perturbation
theory.)
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As we have outlined in Section III, we begin the construction of the algebraic system on
the null plane by commuting the good bilocals with one another. The leading singularity
on the light cone (Eq.(4.1)) gives rise to the simple closed algebra we have mentioned, but
we need also the additional assumption that lower singularities on the light cone give no
contribution to the good–good commutators on the null plane. This additional assump-
tion can be squeezed out of the model in various ways. The simplest, however, is to use
canonical quantization of the quark–gluon model on the null plane.
In the model, the quark field q is written as q+ + q−, where q± = 1

2
(1 ± α3) q. Then q+

obeys the canonical rules {q+α(x), q+β(y)} = 0,
{

q+α(x).q+
+β(y)

}

= δ(3)(x − y)1
2
(l + a3)αβ

on the null plane, where δ(3)(x−y) = δ (x⊥ − y⊥) δ (x− − y−). Thus for any good matrices
βA++ and (βB++), we have on the null plane

[D (x, y, βA++) ,D (u, v, βB++)] =

D (x, vβA++B++) δ(3)(y − u) −D (u, y, βB++A++) δ(3)(v − x),

which is just what we would get from (4.1) with no additional contribution from lower
light cone singularities.
The good–good commutation relations (4.2) on the null plane, together with the equa-
tions (4.1) for the leading light cone singularity in the commutator of two bilocal currents,
illustrate how far we can go with abstracting free quark formulae that are formally un-
changed in the model when the gluon coupling is turned on.
One may go further in certain directions. For example, the formulae for the leading light
cone singularity presumably apply to disconnected as well as connected parts of matrix
elements, and thus the question of the vacuum expected value of a bilocal operator arises.
In the model, the coefficient of the leading singularity as (x − y)2 → 0 of such an expected
value is formally independent of the coupling constant, and we abstract that as well –
the answer here is dependent on statistics, however, and we assume the validity of quark
statistics. Thus we obtain predictions like the following:

σ
(

e+ + e− → hadrons
)

/σ
(

e+ + e− → µ+ + µ−
)

→ 2 (8)

at high energy to lowest order in the fine structure constant.

The leading light cone singularity of an operator product, or of a physical order (T ∗)
product, may also be abstracted from the model, except for certain subtraction terms
(often calculable and / or unimportant) that behave like four–dimensional δ–functions
in coordinate space. To go from a commutator formula to a physical ordered product
formula, we simply perform the substitutions

(2π)−1 ε(z)δ
(

z2
)

→
(

4π2i
)−1 (

z2 − iz0ε
)−1

→
(

4π2i
)−1 (

z2 − iε
)−1

. (9)
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With the aid of the product formulae and the vacuum expected values, we obtain the
PCAC value of the π0 → 2γ decay amplitude.

Other exact abstractions from the vector gluon model that do not contain g are divergence
and curl relations for local V and A currents:

∂

∂xµ

D
(

x, x,
i

2
λi γµ

)

= D
(

x, x,
i

2
[m, λi]

)

,

∂

∂xµ

D
(

x, x,
i

2
λiγµγ5

)

= D
(

x, x,
i

2
{m, λi} γ5

)

, (10)

but we also have, as presented elsewhere2),

∂

∂xν

D
(

x, x,
1

2
λi σµν

)

= −D
(

x, x,
i

2
{m, λi} γν

)

+

[(

∂

∂xν

−
∂

∂yν

)

D
(

x, y,
i

2
λi

)

]

x=y

(11)

∂

∂xν

D
(

x, x,
1

2
λiσµνγ5

)

= −D
(

x, x,
i

2

)

[m, λi] γνγ5

+

[(

∂

∂xν

−
∂

∂yν

)

D
(

x, y,
i

2
λiγ5

)

]

(12)

and a number of other formulae, including the following:
[(

∂

∂xν

−
∂

∂yν

)

D
(

x, y,
i

2
λiγν

)

]

x=y

= D
(

x, x,
i

2
{λi, m}

)

(13)

In the last three formulae, it must be pointed out that for a general direction of x− y we
have the gauge–invariant correspondence

D (x, y, G) ∼ q̄(x)Gq(y) exp ig

x
∫

y

B · dl, (14)

which is independent of the path from y to x when the coordinate difference and the path
are taken as first order infinitesimals. The first internal derivative

[(

∂

∂xµ

−
∂

∂yµ

)

D(x, y, G)

]

x=y

(15)
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is physically interesting for all directions µ (and not just the – direction), as a result of
Lorentz covariance.
In Eqs. (4.5–4.7), we have for the moment thrown off the restriction to a single null plane.
In the next Section, we return to the consideration of the algebra on the null plane, and
we see how further extensions give a much wider algebra, in which departures from free
quark relations begin to appear.

V. THE FURTHER EXTENSION OF NULL PLANE ALGEBRA

We now look beyond the commutation relations of good bilocals on the null plane. In
the model, then, we have to examine operators containing q− or q+

− or both. The Dirac
equation in the gauge we are using (B+ = 0 on the null plane) tells us that we have

− 2i
∂q−
∂x−

= (α⊥ · (−i ▽⊥ −gB⊥) + βm) q+. (16)

In terms of Eq. (5.1), we can review the various anticommutators on the null plane. We
have already discussed the trivial one,

(

q+(x), q+
+(y)

)

= δ (x− − y−) .
1

2
(1 + α3) δ (x⊥ − y⊥) . (17)

Using (5.1), (5.2), the fact that B⊥ commutes with q+ on the null plane, and the equal–

time anticommutator
{

q−, q+
+

}

= 0, we obtain well–known result

{

q−(x), q+
+(y)

}

=
i

4
ε (x− − y−)

[

α⊥ ·
(

i ▽
(y)
⊥ −gB⊥(y)

)

+ βm
] 1

2
(1 + α3) δ (x⊥ − y⊥) .

(18)
Using the same method a second time, one finds, for y− > x−,

{

q−(x), q+
−(y)

}

= −
1

8

∫ y−

x−

dr−
[

α⊥

(

−i ▽
(x)
⊥ −gB⊥ (x⊥, r−)

)

+ βm
]2
(

1 − α3

2

)

δ (x⊥ − y⊥)

+i
g2

32

∫ y−

x−

dy′
−

∫ y′

−

x−

dx′
−

[

α⊥q+

(

x⊥, x′
−

)

; q+

(

y⊥, y′
−

)

α⊥

]

δ (x⊥ − y⊥)

+ δ (x+ − y+)
(

1 − α3

2

)

δ (x⊥ − y⊥) , (19)

where the singularity at the coincidence of the two null planes appears as an unplea-
sant integration constant. This singularity is, of course, responsible in the model for the
Bjorken singularity in the commutator of two bad or terrible operators.
Because of the singularity, it is clumsy to construct the wider algebra by commuting all

11



our bilocals with one another. Instead, we adopt the following procedure. Whenever a
bilocal operator corresponds to one in the model containing q+

−(x), we differentiate with
respect to x−; whenever it corresponds to one in the model containing q(y), we differentiate
with respect to y−. Thus we “promote” all our bilocals to good operators. We construct
the wider algebra by starting with the original good bilocals and these promoted bad and
terrible bilocals. We commute all of these, commute their commutators, and so forth,
until the algebra closes. Then, later on, if we want to commute an unpromoted operator,
we use the information contained in equations of the model like (5.1) - (5.3) to integrate
over x− or y− or both and undo the promotion. (A similar situation obtains for operators
corresponding to those in the model containing the longitudinal gluon potential B−.)
Now let us classify the matrices βG into four categories:
the good ones, βG = A++, with α3 = 1 on both sides;
the bad ones βG = A+− that have α3 = 1 on the left and −1 on the right;
the bad ones βG = A−+ that have α3 = −1 on the left and +1 on the right;
and the terrible ones βG = A−−, with α3 = −1 on both sides.

Then, wherever q− or q+
− appears, we promote the operator by differentiating q− or q+

−

with respect to its argument in the – direction. We obtain, then:

D (x, y, βA++) ,

the good operators, unchanged;

∂
∂x−

D (x, y, βA−+) and ∂
∂y−

(x, y, β, A+−) promoted bad operators:

and

∂
∂x−

∂
∂y−

D (x, y, βA−−), promoted terrible operators.

All 144 of these operators now are given, in the model, in terms of q+ and q+
+ , but

the promoted bad and terrible operators involve the expressions (▽⊥ − igB⊥) q+ and
(▽⊥ + igB⊥) q+

+ . In fact, substituting the Dirac equation for ∂q−
∂x−

into the definitions of

the promoted bad and terrible operators, we see that we obtain good operators (with
coefficients depending on bare quark masses) and also good matrices sandwiched between
(▽⊥ + igB⊥) q+

+ and q+ or between q+
+ and (▽⊥ − igB⊥) q+ or between (▽⊥ + igB⊥) q+

+

and (▽⊥ − igB⊥) q+.
The null plane commutators of all these operators with one another are finite, well–defined,
and physically meaningful, but they lead to an enormous Lie algebra that is not identical
with the one for free quarks, but instead contains nearly all the degrees of freedom of the
model.
Let us first ignore any lack of commutation of the B’s with one another. We keep commu-
ting the operators in question with one another. When ▽⊥±igB⊥ appears acting on a δ(3)
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function, we can always perform an integration and fold it over onto an operator. Thus the
number of applications of ▽⊥ ± igB⊥ grows without limit. Since these gauge derivatives
do not commute with one another, but give field strengths as commutators, it can easily
be seen that we end up with all possible operators corresponding to q̄+(x)Gq+(y) acted
on by any gauge invariant combination of transverse gradients and potentials. We have to
put it differently, the operators corresponding to q̄+(x)Gq+(y) exp ig

∫

P

B · dl for any pair

of points x and y on the null plane connected by any path P lying in the null plane. We
could think of these as operators D(x, y, G, P ) depending on the path P , with βG = A++.

In fact the B’s do not commute with another in the model, and so we get an even more
complicated result. We have

[B⊥i(x), B⊥j(y)] ∼ ε (x− − y−) δ (x⊥ − y⊥) δij (20)

on the null plane, and the commutation of promoted bad and terrible bilocals with one
another leads to operators corresponding to q̄+(x)Gq+(y)q̄+(a)G′q+(b). Further commu-
tation then introduces an unlimited number of sideways gradients, gluon field strengths,
and additional quark pairs, until we end up with all possible operators of the model that
can be constructed from equal numbers of q̄+’s and q+

′s at any points on the null plane
and from exponentials of ig

∫

B · dl for any paths connecting these points.
If we keep track of color, we note that only color singlets are generated. If the gluons are
a color octet Yang–Mills field, we must make suitable changes in the formalism but again
we find that only color singlets are generated. The coupling constant g that occurs is, of
course, the bare coupling constant. If may not be intrinsic to the algebraic system (equiv-
alent to that of quarks and gluons) on the null plane, but it certainly enters importantly
into the way we reach the system starting from well–known operators.
A troublesome feature of the extended null plane algebra is the apparent absence of oper-
ators corresponding to those in the model that contain only gluon field strengths and no
quark operators; for a color singlet gluon, the field strength itself would be such an oper-
ator, while for a color octet gluon we could begin with bilinear forms in the field strength
in order to obtain color singlet operators. Can we obtain these quark–free operators by
investigating discontinuities at the coincidence of coordinates characterizing quark and
antiquark fields in the model? At any rate, we certainly want these quarkfree operators
included in the extended algebra.
Now when our algebra has been extended to include the analogs of all relevant operators
of the model on the null plane that are color singlets and have baryon number A = 0, then
the Hilbert space of all physical hadron states with A = 0 is an irreducible representation
of the algebra.
If we wish, we might as well extend the algebra further by including the analogs of
color singlet operators of the model (on the null plane) that would change the number
of baryons. In that case, the entire Hilbert space of all hadron states is an irreducible
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representation of the complete algebra. From now on, let us suppose that we are al-
ways dealing with the complete color singlet algebra (whether the one abstracted from
the quark–gluon model or some other) and with the complete Hilbert space, which is an
irreducible representation of it.
The representation may be determined by the algebra and the uniqueness of the physical
vacuum. We note that we are dealing with arbitrarily multilocal operators, functions of
any number of points on the null plane. We can Fourier transform with respect to all these
variables and obtain Fourier variables (k+, k⊥) in place of the space coordinates. Since
B+ = 0, there is no formal obstacle to thinking of each k+ as being like the contribution
of the individual quark, antiquark or gluon to the total P+ =

∑

k+. Now P+ = 0 for the
vacuum, and for any other state we can get P+ = 0 only by taking Pz → −∞. The same
kind of smoothness assumption that allows scaling can allow us to forget about matrix
elements to such infinite momentum states. In that case, we have the unique vacuum
state of hadrons as the only state of P+ = 0, while all others have P+ > 0. All Fourier
components of multilocal operators for which

∑

k+ < 0 annihilate the physical vacuum.
(Note in the null plane formalism we do not have to deal with a fictitious “free vacuum”
as in the equal–time formalism.) The Fourier components of multilocal operator with
∑

k+ > 0 act on the vacuum to create physical states, and the orthogonality properties
of these states and the matrix elements of our operators sandwiched between them are
determined largely or wholly by the algebra. The details have to be studied further to
see to what extent the representation is really determined. (The vacuum expected values
contain one adjustable parameter in the case of free quarks, namely the number of colors.)
Once we have the representation of the complete color singlet algebra on the null plane,
as well as the algebra itself, then the physical states of hadrons can all be written as lin-
ear combinations of the normalized basis states of the representation. These coefficients
represent a normalized set of Fock space wave functions for each physical hadron state,
with orthogonality relations for orthogonal physical states. Since the matrix elements
of all null plane operators between basis states are known, the matrix elements between
physical states of bilocal currents or other operators of interest are all calculable in terms
of the Fock space wave functions9).
This situation is evidently the one contemplated by “parton” theorists such as Feynman
and Bjorken; they suppose that we know the complete algebra, that it comes out to be
a quark–gluon algebra, and that the representation is the familiar one, so that there is a
simple Fock space of quark, antiquark, and gluon coordinates. In the Fourier transform,
negative values of each k+ correspond to destruction and positive values to creation.
Now the listing of hadron states by quark and gluon momenta is a long way from listing
by meson and baryon moments. However, as long as we stick to color singlets, there is
not necessarily any obstacle to getting one from the other by taking linear combinations.
The operator M2 = −P 2 −P+P− has to be such that its eigenvalues correspond to meson
and baryon configurations, and not to a continuum of quarks, antiquarks and gluons.
The important physical questions are whether we have the correct complete algebra and
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representation, and what the correct form of Θµν or Pµ or M2 is, expressed in terms of
that algebra.
In the quark–gluon model we have Θµν = Θquark

µν + Θglue
µν , where

Θquark
µν =

1

4
q̄γµ (∂ν − igBν) q + . . . q +

1

4
q̄γν (∂µ − igBµ) q

−
1

4
(∂µ + igBµ) q̄γνq −

1

4
(∂ν + igBν) q̄γµq , (21)

and Θglue
µν does not involve the quark variables at all. The term Θquark

µν , by itself, has the

wrong commutation rules to be a true Θµν (unless g = 0). For example,
(

P quark
1 , P quark

2

)

6=

0. The correct commutation rules are restored when we add the contribution from Θglue
µν .

We can abstract from the quark–gluon model some or all the properties of Θµν , in terms
of the null plane algebra. We see that in the model we have

Θquark
++ =

[(

∂

∂y−
−

∂

∂x−

)

D
(

x, y,
1

2
γ+

)

]

x=y

(22)

and, as is well–known, the expected value of the right–hand side in the proton state can
be measured by deep inelastic experiments with electrons and neutrinos. All indications
are that it is not equal to the expected value of Θ++, but rather around half of that, so
that half is attributable to gluons, or whatever replaces them in the real theory.

In general, using the gauge–invariant definition of D, we have in the model

Θquark
µν =

[(

∂

∂yν

−
∂

∂xν

)

D
(

x, y,
1

4
γµ

)

+

(

∂

∂yµ

−
∂

∂xµ

)

D
(

x, y,
1

4
γν

)

]

x=y

(23)

and Eq. (4.7) then gives us the obvious result

− Θquark
µν = D (x, x, m) . (24)

Whereas in (5.5) we are dealing with an operator that belongs to the null plane algebra
generated by good, promoted bad, and promoted terrible bilocal currents, other compo-
nents of Θquark

µν are not directly contained in the algebra, neither are the bad and terrible
local currents, nor their internal derivatives in directions other than –. In order to obtain
the commutation properties of all these operators with those actually in the algebra, we
must, as we mentioned above, undo the promotions by abstracting the sort of information
contained in (5.3) and (5.4). Thus we are really dealing with a wider mathematical sys-
tem than the closed Lie algebra abstracted from that of operators in the model containing
q+
+ , q+ and B⊥ only.
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We shall assume that the true algebraic system of hadrons resembles that of the quark–
gluon model at least to the following extent:

1) The null plane algebra of good components (4.2) and the leading light cone singu-
larities (4.1) are unchanged.

2) The system acts as if the quarks had vectorial coupling in the sense that the diver-
gence equation (4.3) and (4.4) are unchanged.

3) There is a gauge derivative of some kind, with path–dependent bilocals that for an
infinitesimal interval become path–independent. Eqs. (4.5) - (4.7) are then defined
and we assume they also are unchanged.

4) The expression (5.6) for Θquark
µν is also defined and we assume it, too, is unchanged,

along with its corollary (5.7).

About the details of the form of the path–dependent null plane algebra arising from the
successive application of gauge derivatives, we are much less confident, and correspond-
ingly we are also less confident of the nature of the gluons, even assuming that we can
decide whether to use a color singlet or a color octet. What we do assert is that there is
some algebraic structure analogous to that in quark–gluon theory and that it is in prin-
ciple knowable.
One fascinating problem, of course, is to understand the conditions under which we can
have an algebra resembling that for quarks and gluons and yet escape having real quarks
and gluons. Under what conditions do the bilocals act as if they were the products of
local operators without, in fact, being seen. We seek answers to this and other questions
by asking “Are there models other than the quark–gluon field theory from which we can
abstract results? Can we replace Θglue

µν by something different and the gauge–derivative
by a different gauge–derivative?”

VI. ARE THERE ALTERNATIVE MODELS?

In the search for alternatives to gluons, one case worth investigating is that of the simple
dual resonance model. It can be considered in three stages: first, the theory of a huge
infinity of free mesons of all spins; next, tree diagrams involving the interaction of these
mesons; and finally loop diagrams. The theory is always treated as though referring to
real mesons, and an S–matrix formulation is employed in which each meson is always on
the mass shell.
Now the free stage of the model can easily be reformulated as a field theory in ordinary
coordinate space, based on a field operator Φ that is a function not of one point in space,
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but of a whole path – it is infinitely multilocal. The free approximation to the dual reso-
nance model is then essentially the quantum theory of a relativistic string or linear rubber
band in ordinary space.
The coupling that leads, on the mass shell, to the tree diagrams of the dual resonance
model has not so far been successfully reformulated as a field theory coupling but we shall
assume that this can be done. Then the whole model theory, including the loops, would
be a theory of a large infinity of local meson fields, all described simultaneously by a grand
infinitely multilocal field Φ, couples to themselves and one another. The mesons, in the
free approximation, lie on straight parallel Regge trajectories with a universal slope α′.
In the simplest form of such a theory, the grand field Φ (path) can be resolved into local
fields φ(R), Φnµ(R), Φnµ,n′µ′(R), . . .. There is a single scalar, a single infinity of vectors, a
double infinity of tensors and scalars, and so forth. The matrices anµ and a+

nµ of the dual
theory connect these components of Φ with one another.
Perhaps the model theory of a gluon field can be replaced by a field theory version of
a dual resonance model; the properties of operators, including Θµν , would be abstracted
from the new model instead of the old one. With α′ 6= 0, a term δ would naturally appear
that violates scale invariance and is not related to the bare quark masses. (Probably lδ = 0
here rather than −2 as in the case of a gluon mass.) The gauge derivative in the other
portion of Θµν , referring to the quarks, would then involve a special linear combination
of the Φnν(R) instead of the gluon potential Bµ(R).
An amusing point is that in the limit of a dual resonance theory as α′ → 0 (so that the
trajectories become flat), with attention concentrated on the value α = 1, if the mathe-
matics of a Lie group is built into the model, then the mass shell predictions become those
of the corresponding massless Yang–Mills theory10). That suggests that one might even
try a dual resonance model as a replacement of a color octet Yang–Mills gluon model,
with abstraction of the properties of color singlet operators.
We are not at all sure that what we are discussing here is a practical scheme, and if it is,
we do not know how the resulting algebraic system differs from that of gluons. We put it
forward merely in order to stimulate thinking about whether or not here are candidates
for the algebra, the representation, and the form of Θµν other than those suggested by
the gluon model.
Our attempt to use the dual model to construct a field theory has no bearing on whether
the mass–shell dual model can lead to a complete S–matrix theory of hadrons; our sug-
gestion resembles the use of limits of dual theories to obtain unified theories of weak and
electromagnetic interactions or the theory of gravity.
One interesting speculation that is independent of what model we use for the stuff to
which quarks are coupled is that perhaps when we perform the mathematical transforma-
tion from current quarks to constituent quarks and obtain the crude naive quark model
of meson and baryon spectra and couplings, the gluons or whatever they are will also be
approximately transformed into fictitious constituents, so that meson states would ap-
pear that act as if they were made of gluons rather than qq̄ pairs. If there are indeed ten
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low–lying scalar mesons rather than nine, then we might interpret the tenth one (roughly
speaking, the ε◦ meson) as the beginning of such a sequence of extra Su3 singlet meson
states. (A related question, much debated by specialists in the usual, mass–shell dual
models, is whether the infinite sequence of meson and baryon Regge trajectories, all ris-
ing indefinitely and straight and parallel in zeroth approximation, should be extended to
exotic channels, i. e., those with quantum numbers characteristic of qqqqq̄, qq̄qq̄ etc.).
Let us end by emphasizing our main point, that it may well be possible to construct an
explicit theory of hadrons, based on quarks and some kind of glue, treated as fictitious,
but with enough physical properties abstracted and applied to real hadrons to constitute
a complete theory. Since the entities we start with are fictitious, there is no need for any
conflict with the bootstrap or conventional dual model point of view.
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APPENDIX – BILOCAL FORM FACTOR ALGEBRA

We have described in Section III and IV a Lie algebra of good components of bilocal
operators on a null plane. The generators are 36 functions of x−, y− and x⊥ = y⊥, namely
Fj+,F5

j+, Tjl+, and Tj2+. We define R ≡ 1/2(x+y) and z ≡ x−y; then we have functions
of R⊥, R−, and z−.
With z− set equal to zero, we have just the usual good local operators on the null plane,
related to the corresponding good local operators at equal times with P3 → ∞. We recall
that in the early work using P3 → ∞ the most useful applications (fixed virtual mass
sum rules) involved matrix elements with no change of longitudinal momentum, i. e.,
transverse Fourier components of the operators. Dashen and Gell–Mann11) studied these
operators and found that between finite mass states their matrix elements do not depend
separately on the transverse momenta of the initial and final states, but only on the dif-
ference, which is the Fourier variable k⊥. Thus they obtained a “form factor algebra”
generated by operators Fi (k⊥) and F 5

i (k⊥), to which, of course, one may adjoin Til (k⊥)
and Ti2 (k⊥).
We may consider the analogous quantities using the null plane method and generating to
bilocals:

Fi (k⊥, z−) ≡
∫

d4Rδ (R+)Fi+ (R, z−) exp ik1

[

R1 + P−1
+ (Λ1 + J2)

]

exp ik2

[

R2 + P−1
+ (Λ2 − J1)

]

(25)
and so forth. Here the integration over R− assures us that P+ ≡ P0 + P3 is conserved by
the operator. (We note that Minkowski12) and others have studied the interesting problem
of extracting useful sum rules from operators unintegrated over R−, but we do not discuss
that here.) The quantities P−1

+ (Λ1 + J2) and P−1
+ (Λ2 − J1) act like negatives of center–

of–mass coordinates, −R̄1 and −R̄2, since on the null plane x+ = 0 we have Λ1 + J2 =
−
∫

R1Θ++d4Rδ (R+) and Λ1 + J1 = −
∫

R2Θ++d4Rδ (R+), while P+ =
∫

Θ++d4R (R+).
Our bilocal form factor algebra has the commutation rules

[

Fi (k⊥, z−) , Fj

(

k′
⊥, z′−

)]

= i fijkFk

(

k⊥ + k′
⊥, z− + z′−

)

, (26)

etc., where the structure constants in general are those of [U6]w. Putting z− = z−
′ = 0,

we obtain exactly the form factor algebra of Dashen and Gell–Mann. If we specialize
further to k⊥ = k′

⊥ = 0, we obtain the algebra [U6]w,∞, currents, of vector, axial vector,
and tensor charges. It is not, of course, identical to the approximate symmetry algebra
[U6]w,∞ strong, for baryon and meson spectra and vertices, but is related to it by a trans-
formation, probably unitary. That is the transformation which we have described crudely
as connecting current quarks and constituent quarks.
The behavior of the operators Fi (k⊥), etc., with respect to angular momentum in the
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s–channel is complicated and spectrum–dependent; it was described by Dashen and Gell–
Mann in their angular condition10). There is a similar angular condition for the bilocal
generalizations Fi (k⊥, z−), etc.
The behavior of Fi (k⊥, z−) and the other bilocals with respect to angular momentum in
the cross–channel is, in contrast, extremely simple. If we expand Fi (k⊥, z−) or F 5

i (k⊥, z−)
in powers of z−, each power zn

− corresponds to a single angular momentum, namely
J = n + 1.
As we expand Fi (k⊥, z−), etc., in power series in z−, we note that each term, in z−

J−1,
has a pole in k2

⊥ at k2
⊥ + M2 = 0, where M is the mass of any meson of spin J . By an

extension of the Regge procedure, we can keep k2
⊥ fixed and let the angular momentum

vary by looking at the asymptotic behavior of matrix elements of Fi (k⊥, z−), etc., at large

z−. A Regge pole in the cross channel gives a contribution z
α(−k2

⊥)
− β (k2

⊥) [sin πα (−k2
⊥)]

−1

and a cut gives a corresponding integral over α. Thus the bilocal form factor Fi (k⊥, z−)
couples to each Reggeon in the non–exotic meson system in the same way that Fi (k⊥)
couples to each vector meson. The contribution of each Regge pole to the asymptotic
matrix element of Fi (k⊥, z−) between hadron states A and B is given by the coupling of
Fi (k⊥, z−) to that Reggeon multiplied by the strong coupling constant of the Reggeon to
A and B.
It would be nice to substitute the Regge asymptotic behavior of Fi (k⊥, x−) etc., into the
commutation rules and obtain algebraic relations among the Regge residues. Unfortu-
nately, the asymptotic limit is not approached uniformly in the different matrix elements,
and the asymptotic Regge formulae cannot, therefore, be used for the operators every-
where in the equations (A.2); only partial results can be extracted.
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