46 research outputs found

    New quantum phase transitions in the two-dimensional J1-J2 model

    Full text link
    We analyze the phase diagram of the frustrated Heisenberg antiferromagnet, the J1-J2 model, in two dimensions. Two quantum phase transitions in the model are already known: the second order transition from the Neel state to the spin liquid state at (J_2/J_1)_{c2}=0.38, and the first order transition from the spin liquid state to the collinear state at (J_2/J_1)_{c4}=0.60. We have found evidence for two new second order phase transitions: the transition from the spin columnar dimerized state to the state with plaquette type modulation at (J_2/J_1)_{c3}=0.50(2), and the transition from the simple Neel state to the Neel state with spin columnar dimerization at (J_2/J_1)_{c1}=0.34(4). We also present an independent calculation of (J_2/J_1)_{c2}=0.38 using a new approach.Comment: 3 pages, 5 figures; added referenc

    Perturbation theories for the S=1/2 spin ladder with four-spin ring exchange

    Full text link
    The isotropic S=1/2 antiferromagnetic spin ladder with additional four-spin ring exchange is studied perturbatively in the strong coupling regime with the help of cluster expansion technique, and by means of bosonization in the weak coupling limit. It is found that a sufficiently large strength of ring exchange leads to a second-order phase transition, and the shape of the boundary in the vicinity of the known exact transition point is obtained. The critical exponent for the gap is found to be η1\eta\simeq1, in agreement both with exact results available for the dimer line and with the bosonization analysis. The phase emerging for high values of the ring exchange is argued to be gapped and spontaneously dimerized. The results for the transition line from strong coupling and from weak coupling match with each other naturally.Comment: 8 pages, 4 figures, some minor changes in text and reference

    Statistical Mechanics of the Self-Gravitating Gas: I. Thermodynamic Limit and Phase Diagram

    Full text link
    We provide a complete picture to the selfgravitating non-relativistic gas at thermal equilibrium using Monte Carlo simulations, analytic mean field methods (MF) and low density expansions. The system is shown to possess an infinite volume limit in the grand canonical (GCE), canonical (CE) and microcanonical (MCE) ensembles when(N, V) --> infinity, keeping N/ V^{1/3} fixed. We compute the equation of state (we do not assume it as is customary), as well as the energy, free energy, entropy, chemical potential, specific heats, compressibi- lities and speed of sound;we analyze their properties, signs and singularities. All physical quantities turn out to depend on a single variable eta = G m^2 N/ [V^{1/3} T] that is kept fixed in the N--> infinity and V --> infinity limit. The system is in a gaseous phase for eta < eta_T and collapses into a dense objet for eta > \eta_T in the CE with the pressure becoming large and negative. At eta simeq eta_T the isothermal compressibility diverges. Our Monte Carlo simulations yield eta_T simeq 1.515. PV/[NT] = f(eta) and all physical magni- tudes exhibit a square root branch point at eta = eta_C > eta_T. The MF for spherical symmetry yields eta_C = 1.561764.. while Monte Carlo on a cube yields eta_C simeq 1.540.The function f(eta) has a second Riemann sheet which is only physically realized in the MCE.In the MCE, the collapse phase transition takes place in this second sheet near eta_MC = 1.26 and the pressure and temperature are larger in the collapsed phase than in the gas phase.Both collapse phase transitions (CE and MCE) are of zeroth order since the Gibbs free energy jumps at the transitions. f(eta), obeys in MF a first order non-linear differential equation of first kind Abel's type.The MF gives an extremely accurate picture in agreement with Monte Carlo both in the CE and MCE.Comment: Latex, 51 pages, 15 .ps figures, to appear in Nucl. Phys.

    Chern-Simons Theory for Magnetization Plateaus of Frustrated J1J_1-J2J_2 Heisenberg model

    Full text link
    The magnetization curve of the two-dimensional spin-1/2 J1J_1-J2J_2 Heisenberg model is investigated by using the Chern-Simons theory under a uniform mean-field approximation. We find that the magnetization curve is monotonically increasing for J2/J1<0.267949J_2/J_1 < 0.267949, where the system under zero external field is in the antiferromagnetic N\'eel phase. For larger ratios of J2/J1J_2/J_1, various plateaus will appear in the magnetization curve. In particular, in the disordered phase, our result supports the existence of the M/Msat=1/2M/M_{\rm sat}=1/2 plateau and predicts a new plateau at M/Msat=1/3M/M_{\rm sat}=1/3. By identifying the onset ratio J2/J1J_2/J_1 for the appearance of the 1/2-plateau with the boundary between the N\'eel and the spin-disordered phases in zero field, we can determine this phase boundary accurately by this mean-field calculation. Verification of these interesting results would indicate a strong connection between the frustrated antiferromagnetic system and the quantum Hall system.Comment: RevTeX 4, 4 pages, 3 EPS figure

    Phase diagram for a class of spin-half Heisenberg models interpolating between the square-lattice, the triangular-lattice and the linear chain limits

    Full text link
    We study the spin-half Heisenberg models on an anisotropic two-dimensional lattice which interpolates between the square-lattice at one end, a set of decoupled spin-chains on the other end, and the triangular-lattice Heisenberg model in between. By series expansions around two different dimer ground states and around various commensurate and incommensurate magnetically ordered states, we establish the phase diagram for this model of a frustrated antiferromagnet. We find a particularly rich phase diagram due to the interplay of magnetic frustration, quantum fluctuations and varying dimensionality. There is a large region of the usual 2-sublattice Ne\'el phase, a 3-sublattice phase for the triangular-lattice model, a region of incommensurate magnetic order around the triangular-lattice model, and regions in parameter space where there is no magnetic order. We find that the incommensurate ordering wavevector is in general altered from its classical value by quantum fluctuations. The regime of weakly coupled chains is particularly interesting and appears to be nearly critical.Comment: RevTeX, 15 figure

    The Physical Principles of Quantum Mechanics. A critical review

    Get PDF
    The standard presentation of the principles of quantum mechanics is critically reviewed both from the experimental/operational point and with respect to the request of mathematical consistency and logical economy. A simpler and more physically motivated formulation is discussed. The existence of non commuting observables, which characterizes quantum mechanics with respect to classical mechanics, is related to operationally testable complementarity relations, rather than to uncertainty relations. The drawbacks of Dirac argument for canonical quantization are avoided by a more geometrical approach.Comment: Bibliography and section 2.1 slightly improve

    Quantum disorder in the two-dimensional pyrochlore Heisenberg antiferromagnet

    Full text link
    We present the results of an exact diagonalization study of the spin-1/2 Heisenberg antiferromagnet on a two-dimensional version of the pyrochlore lattice, also known as the square lattice with crossings or the checkerboard lattice. Examining the low energy spectra for systems of up to 24 spins, we find that all clusters studied have non-degenerate ground states with total spin zero, and big energy gaps to states with higher total spin. We also find a large number of non-magnetic excitations at energies within this spin gap. Spin-spin and spin-Peierls correlation functions appear to be short-ranged, and we suggest that the ground state is a spin liquid.Comment: 7 pages, 11 figures, RevTeX minor changes made, Figure 6 correcte

    Solution of generalized fractional reaction-diffusion equations

    Full text link
    This paper deals with the investigation of a closed form solution of a generalized fractional reaction-diffusion equation. The solution of the proposed problem is developed in a compact form in terms of the H-function by the application of direct and inverse Laplace and Fourier transforms. Fractional order moments and the asymptotic expansion of the solution are also obtained.Comment: LaTeX, 18 pages, corrected typo

    High precision Monte Carlo simulations of interfaces in the three-dimensional Ising model: a comparison with the Nambu-Goto effective string model

    Get PDF
    Motivated by the recent progress in the effective string description of the interquark potential in lattice gauge theory, we study interfaces with periodic boundary conditions in the three-dimensional Ising model. Our Monte Carlo results for the associated free energy are compared with the next-to-leading order (NLO) approximation of the Nambu-Goto string model. We find clear evidence for the validity of the effective string model at the level of the NLO truncation.Comment: 20 pages, 1 figur

    Baxter Q-operator and Separation of Variables for the open SL(2,R) spin chain

    Full text link
    We construct the Baxter Q-operator and the representation of the Separated Variables (SoV) for the homogeneous open SL(2,R) spin chain. Applying the diagrammatical approach, we calculate Sklyanin's integration measure in the separated variables and obtain the solution to the spectral problem for the model in terms of the eigenvalues of the Q-operator. We show that the transition kernel to the SoV representation is factorized into the product of certain operators each depending on a single separated variable. As a consequence, it has a universal pyramid-like form that has been already observed for various quantum integrable models such as periodic Toda chain, closed SL(2,R) and SL(2,C) spin chains.Comment: 29 pages, 9 figures, Latex styl
    corecore