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Abstract

Motivated by the recent progress in the effective string description
of the interquark potential in lattice gauge theory, we study inter-
faces with periodic boundary conditions in the three-dimensional Ising
model. Our Monte Carlo results for the associated free energy are
compared with the next-to-leading order (NLO) approximation of the
Nambu-Goto string model. We find clear evidence for the validity of
the effective string model at the level of the NLO truncation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DIAS Access to Institutional Repository

https://core.ac.uk/display/296288896?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Recently, the effective string description of the interquark potential in lattice
gauge theories (LGT) has attracted a renewed interest [1–18]: the increased
computational power and improved algorithm efficiency [19–21] have allowed
to perform stringent numerical tests of the model predictions, while a better
understanding of the theoretical aspects was achieved [22–26]. One of the
plenary talks at the XXIII International Symposium on Lattice Field Theory
held in Trinity College, Dublin, in July 2005 was devoted to the topic [27].

Many of the mentioned studies are focused on the behaviour of the two-
point Polyakov loop correlation function: the numerical results for the free
energy associated with a pair of static external sources in a pure gauge
theory were compared with predictions from effective string models, as a
function of the interquark distance r and of the inverse temperature L.

One of the simplest effective string theories is based on the action origi-
nally formulated by Nambu and Goto [28,29]: it is a purely bosonic model,
which, despite the difficulties related to anomaly and non-renormalisability,
has a straightforward geometric interpretation, and for which the leading or-
der (LO) and next-to-leading order (NLO) terms in an expansion around the
classical, long-string configuration agree with the effective model proposed
by Polchinski and Strominger [25]. Furthermore, the Nambu-Goto action
also appears (together with other terms) in the derivation of an effective
description for QCD [30,31].

In this paper, as a further step in this direction, we compare the Nambu-
Goto model with a set of high precision results on the interface free energy of
the Ising spin model in three dimensions with periodic boundary conditions
in the directions parallel to the interface. As it will be discussed in detail
in section 2, an interface can be forced into the Ising spin system by intro-
ducing a seam of antiferromagnetic bonds through a whole cross-section of
the system. Via duality, Wilson loops and Polyakov loop correlators in the
Z2 gauge theory are related with interfaces in the Ising spin model: Wilson
loops are mapped into interfaces with fixed boundary conditions in both
directions, while Polyakov loop correlators are mapped into interfaces with
periodic boundary conditions in one direction and fixed boundary condi-
tions in the other direction. Hence, the present study is complementary to
our previous work on the Polyakov-loop correlator; the periodic boundary
conditions in both directions allow us to disentangle the pure string contri-
butions from other effects, possibly (directly or indirectly) induced by fixed
boundaries.

Besides these reasons of interest, which are primarily motivated by the
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study of confinement in lattice gauge theories, fluid interfaces are also very
interesting because they have several experimental realizations, ranging from
binary mixtures to amphiphilic membranes (for a review see for instance [32,
33]). Moreover the Nambu-Goto model (which is based on the assumption
that the action of a given string configuration is proportional to the area of
the surface spanned by the string during its time-like evolution) is closely
related [33] to the so-called capillary wave model [34], which was proposed
several decades ago (actually before the Nambu-Goto action), as a tool to
describe interfaces in three-dimensional statistical physics systems.

Finally, it is interesting to remark that interfaces in spin models are also
naturally connected to maximal ’t Hooft loops in lattice gauge theory —
see, for instance, [35,36].

The problem of the interface with periodic boundary conditions has been
studied in a number of articles, particularly in the early Nineties of last
century — see [37,38] and references therein. The level of precision in these
studies favoured the NLO prediction of the Nambu-Goto model against the
Gaussian approximation, however it did not allow for a precise quantitative
check of the NLO prediction itself.

The increase in computer power and a slightly smaller correlation length
compared with [37,38] allow us a significantly better statistical control of the
next to leading order corrections considered here. In particular, our present
statistics is about 1000 times larger than that of [37].

The structure of this paper is the following: in section 2 we briefly de-
scribe the introduction of an interface in the 3D Ising model, and the asso-
ciated free energy; next, in section 3, we describe the numerical algorithm
used in this work. Section 4 offers a review of known theoretical and nu-
merical results, while our new results are presented in section 5. Finally, we
summarise our conclusions in section 6.

2 The 3D Ising model and the interface free energy

The confined phase of the Z2 gauge model in 3D is mapped by duality into
the low temperature phase of the Ising spin model, where the global sym-
metry is spontaneously broken and a non-vanishing magnetisation exists.
According to the duality transformation, the observables of the gauge the-
ory can be represented introducing an antiferromagnetic coupling for suit-
able sets of bonds in the spin model: these bonds pierce a surface having
the original source lines as its boundary. This procedure can be naturally
extended by introducing a seam of antiferromagnetic bonds throughout a

2



whole time-slice on the lattice. Effectively, this amounts to imposing an-
tiperiodic boundary conditions along the “time-like” direction, and induces
an interface separating a domain of positive from a domain of negative mag-
netisation.1

These interfaces are the main subject of our analysis; to define the no-
tations, we consider a periodic, cubic lattice with sizes L0 × L1 × L2. Let
(x0, x1, x2) denote the coordinates of the lattice sites, with xµ = 0, . . . , Lµ

for µ = 0, 1, 2. The action is given by:

S = −β
∑

x

∑

µ

Jx,µ sxsx+µ̂ . (1)

Let us focus on two possible choices for the Jx,µ variables:

• setting Jx,µ = 1 for all x, µ, we obtain a system with periodic boundary
conditions in all directions; the corresponding partition function is
denoted by Zp;

• setting Jx,µ = −1 for x = (L0, x1, x2) and µ = 0, and Jx,µ = +1 for
all the remaining links we obtain a system with antiperiodic boundary
conditions in the x0-direction and periodic boundary conditions in the
remaining directions; the corresponding partition function is denoted
by Za.

The latter choice induces an interface in the system, whose free energy2 is
given — in first-approximation — by the difference between the free energy

of the system with anti-periodic and periodic boundary conditions: F
(0)
s =

− ln Za

Zp
. This quantity has a characteristic L0-dependence, due the fact that

the interface induced by the anti-periodic boundary conditions enjoys full
translational invariance in the x0-direction. This entropy effect can be easily
taken into account defining:

F (1)
s = − ln

Za

Zp

+ lnL0 . (2)

However, for large values of L0, an arbitrary odd (even) number of interfaces
can appear in the system with antiperiodic (periodic) boundary conditions;

1An alternative way to generate an interface in the Ising spin system would require
to fix all the spin variables on the two opposite time-slices at the boundaries to the
values +1 and −1, respectively; however such Dirichlet boundary conditions would lead
to rather large finite-size effects. Further methods to determine the interface free energy
are discussed in the literature. For a collection of articles on this subject see e.g. [39].

2For convenience, we use the so-called “reduced free energy”, which is dimensionless.
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assuming that the interfaces do not interact,3 the reduced interface free
energy can be defined as [40]:

F (2)
s = ln L0 − ln

(

1

2
ln

1 + Za/Zp

1 − Za/Zp

)

, (3)

which is used in the following.
Finally, we would like to remark that the ratio of partition functions

Za/Zp is directly related with the tunneling correlation length in a system
with cylindrical geometry; for a detailed discussion see section 4.2 of [37].

3 The simulation algorithm

There are different methods available to compute the ratio of partition func-
tions Za/Zp by Monte Carlo simulations.

• Integration of the energy difference Ea − Ep over βs, starting from a
value of βs in the high temperature phase of the Ising spin model, where
the interface tension vanishes. (See e.g. [38] and references therein.)

• Snake-algorithm [20, 21]: A sequence of systems that interpolate be-
tween the periodic and anti-periodic case is defined, introducing the
defects one-at-a-time; the Za/Zp ratio can be factored as:

Za

Zp

=
ZL1×L2

ZL1×L2−1
· ZL1×L2−1

ZL1×L2−2
· . . . · Z1

Z0
, (4)

where Zk is the partition function associated with the system where
k defects have been introduced (so that ZL1×L2

= Za, while Z0 =
Zp). The free energy differences between Zk and Zk+1 can be easily
computed, as the two systems only differ by the value of Jx,µ on a single
bond: since in general there is a sufficiently large overlap between
configurations contributing to Zk and Zk+1, importance sampling with
respect to the denominators on the right-hand side of eq. (4) is possible.
However, for any 0 < k < L1 × L2 the translational invariance in the
x0-direction is broken. However, for k sufficiently close to L1×L2, the
entropy gain of “depinning” becomes comparable with the energy cost
and the interface starts to move along the lattice in the x0-direction.
This causes severe autocorrelation problems in a numerical simulation
of these systems.

3This assumption is reasonable for a low density of interfaces.
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These two choices are quite similar in spirit: the free energy difference is
evaluated from the sum of many small contributions that can be easily com-
puted. Both methods allow to investigate large interfaces, and the compu-
tational effort required for a given precision grows only with a power of the
lattice size. However, the obvious practical difficulty with both methods is
that a large number of individual simulations have to be run.

In the present work, we have measured the ratio of the partition functions
Za/Zp directly, using a variant of the boundary flip algorithm [40]. As in [41],
we did not actually change the boundary conditions during the simulation:
rather, we counted the configurations with periodic boundary conditions
that would allow for this flip. This method is efficient as long as Za/Zp is
not too small. Since Za/Zp ≃ exp(−σL1L2), σL1L2 . 10 is a rather strict
upper bound on the interface size that can be reached with this method,
since the signal to noise ratio decays exponentially with the interface area.4

However, these lattice sizes are sufficient for our purpose as we shall see in
the following.

For the update of the configuration, we have used the standard sin-
gle cluster algorithm [42]. For most of our simulations we have used the
G05CAF random number generator of the NAG library, which is a lin-
ear congruential generator characterised by a = 1313, c = 0 and modulus
m = 259. As a check of the reliability of the random number generator, we
have repeated a few of the runs for βs = 0.236025 with the RANLUX gen-
erator discussed in [43], and the results are consistent with those obtained
before with the G05CAF generator. Since there is no hint of a problem
with the G05CAF, and the RANLUX generator is more time-consuming,
we continued with the G05CAF generator.

4 Summary of results given in literature

In the following subsections we review the theoretical expectations and the
numerical results which are available in the literature.

4.1 Theoretical expectations

A possible description for the dynamics of the interface in the continuum is
provided by the Nambu-Goto model [28, 29]: it is based on the hypothesis
that the action associated with a given interface configuration is proportional

4Due to our enormous statistics we could obtain a meaningful result for interface areas
with σL1L2 slightly larger than 10.
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to the area of the interface itself:

S = σ

∫

d2ξ
√

det gαβ , (5)

where ξ are the surface coordinates, while gαβ is the metric induced by the
embedding in the three-dimensional space. For sake of simplicity, it is as-
sumed that the interface can be parametrised in terms a single-valued, real
function describing the transverse displacement of the surface with respect
to a reference plane. This model is essentially the same as the capillary
wave model [33], with the further assumption that σ does not depend on
the direction of the normal to the infinitesimal surface element. Here we
neglect the theoretical difficulties associated with the fact that the model is
actually anomalous, and non-renormalisable; in the following of the discus-
sion, the model will be regarded as an effective theory expected to describe
the dynamics of the interface for sufficiently large values of σL1L2 (i.e. of
the minimal interface area, in dimensionless units).

A perturbative expansion in powers of (σL1L2)
−1 yields the following

result for the partition function associated with the interface:

Z =
λ√
u

e−σL1L2

∣

∣

∣
η (iu) /η (i)

∣

∣

∣

−2
[

1 +
f(u)

σL1L2
+ O

(

1

(σL1L2)2

)]

, (6)

This expression was obtained for the first time in [44] with a zeta-function
regularization and then re-obtained in [37, 45] with three other different
types of regularization. In eq. (6), λ is a parameter that can be predicted by
an argument from perturbation theory of the φ4 model in three dimensions
(see below), τ = iu = iL2/L1 is the modulus of the torus associated with
the cross-section of the system, η is Dedekind’s function:

η(τ) = q1/24
∞
∏

n=1

(1 − qn) , q ≡ exp(2πiτ) , (7)

and

f (u) =
1

2

{

[π

6
uE2 (iu)

]2
− π

6
uE2 (iu) +

3

4

}

, (8)

where E2(τ) is the first Eisenstein series:

E2(τ) = 1 − 24

∞
∑

n=1

n qn

1 − qn
, q ≡ exp(2πiτ) , (9)

In most of our simulations, we have chosen u = L2/L1 = 1; for this choice
one gets: f(1) = 1/4.
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In the following we shall be interested in the interface free energy, which,
for square lattices of size L1 = L2 ≡ L takes the form:

Fs = σL2 − ln λ − 1

4σL2
+ O

(

1

(σL2)2

)

(10)

This is the theoretical expectation which, in the following section, we shall

compare with our numerical results for F
(2)
s — see eq. (3).

The value of λ cannot be predicted by the effective interface model,
however perturbation theory of the 3D φ4 model [38,46,47] gives:

ln λ =
1

2
ln σ − ln 2 + ln S , (11)

with:

S =
4

√

1 − ur

4π

(

39
32 − 15

16 ln 3
)

· Γ(3/4)

Γ(1/4)
. (12)

Using ur = 14.3(1) [48], one gets G ≡ ln 2 − ln S ≈ 0.29.

4.2 Numerical results

In table 1 we have summarised numerical estimates for basic quantities at
the values of βs studied in the present work. The result for the critical finite
temperature phase transition Nt is taken from table 4 of [49]. The interface
tension σ is taken from table 8 of [9]. Note that in [9] only the leading order
quantum corrections were used to obtain these results. The system sizes
were large enough to safely ignore NLO contributions. The result for the
exponential correlation length ξ is taken from table 1 of [9]. These numbers
were obtained interpolating the results of [48, 50] and from the analysis of
the low temperature series [51]. The magnetisation m has been computed
from the interpolation formula eq. (10) of [52].

5 New numerical results

In this section we present our new numerical results.
First we studied the finite L0 effects in the interface free energy Fs as

defined by eq. (3). To this end, we run a series of simulations at βs =
0.236025 with L1 = L2. Writing Za and Zp in terms of eigenvalues of the
transfer matrix (for discussion see e.g. section 4.2 of [37]), one sees that the
leading corrections in L0 to Fs(L1, L2) vanish as exp(−L0/ξ). Indeed, the
results in table 2 show that the results for Fs(L1, L2) quickly converge with
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Table 1: Summary of numerical estimates for basic quantities at the values
of βs studied in this work. βg is the coupling of the Z2 gauge theory that
corresponds, via duality, to the βs of the Ising spin model. Nt is the inverse
of the finite temperature phase transition, σ is the interface tension, ξ the
bulk correlation length and m the magnetisation.

βs βg Nt σ ξ m

0.276040 0.65608 2 0.204864(9) 0.644(1) 0.85701
0.236025 0.73107 4 0.044023(3) 1.456(3) 0.63407
0.226102 0.75180 8 0.0105241(15) 3.09(1) 0.45311

increasing L0. For all values of L1 = L2 given in table 2, the choice L0 = 3L1

should guarantee that corrections due to the finiteness of L0 are far smaller
than the statistical errors of our numerical estimates. In the following, we
shall use L0 = 3L1 also for other values of βs. In table 3 and in table 4 we
present our results for βs = 0.27604 and βs = 0.226102, respectively.

5.1 Fitting the data

In figure 1 we have plotted Fs − σL2 + ln(σ)/2 as a function of the dimen-
sionless quantity

√
σL, where L = L1 = L2. The values for σ are taken from

table 1. As βs → βc, in the scaling limit, the curves for different values of βs

should fall on top of each other. While the curve for βs = 0.27604 is clearly
different from the other two, those for βs = 0.236025 and 0.226102 are close
to each other — their difference being approximately constant. We have
checked that these observations still hold when varying σ within the quoted
errors. One should note that the LO effective string prediction corresponds
to Fs − σL2 + ln(σ)/2 being constant.

Next we performed a more quantitative analysis of our data. Motivated
by the theoretical prediction of eq. (6), we fitted our data with the ansatz:

Fs = σL2 + c0 +
c2

σL2
(13)

for the interface free energy. Using the interface tension σ as parameter of
the fit, we get results that are consistent with those in table 1. However,
the statistical error of our new results for σ is clearly larger than the error
quoted in table 1. Also, since we are mainly interested in the value of c2,
we have fixed σ to the values given in table 1 in the following.
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Table 2: Results for the interface free energy Fs as defined in eq. (3) at
βs = 0.236025. L0, L1 and L2 give the linear sizes of the lattice and stat
is the number of measurements. For each measurement, 10 single cluster
updates were performed.

L0 L1 L2 stat/100000 Fs

6 6 6 500 3.37985(29)
8 6 6 500 3.38689(26)
10 6 6 500 3.38989(22)
12 6 6 500 3.39067(20)
18 6 6 500 3.39079(17)

7 7 7 500 3.97243(37)
10 7 7 1000 3.99356(22)
14 7 7 500 3.99783(26)
21 7 7 599 3.99802(19)

24 8 8 500 4.67900(28)

18 9 9 1000 5.44197(35)
27 9 9 1000 5.44170(28)

30 10 10 910 6.29015(44)

22 11 11 1000 7.22382(78)
33 11 11 1000 7.22219(64)

36 12 12 1000 8.2441(10)

26 13 13 1000 9.3487(21)
39 13 13 1000 9.3481(17)

42 14 14 1000 10.5403(30)

Table 3: Results for the interface free energy Fs as defined in eq. (3) at βs =
0.27604. For all the sets of parameters 108 measurements were performed;
for each measurement 5 single cluster updates were performed.

L0 L1 L2 Fs

12 4 4 4.29672(23)
15 5 5 6.18752(56)
18 6 6 8.4669(16)
21 7 7 11.1540(57)
24 8 8 14.239(25)
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Table 4: Results for the interface free energy Fs as defined in eq. (3) at
βs = 0.226102. For each measurement 20 single cluster updates performed.
In total, the simulations whose results are summarised in this table took
about 2 years of CPU-time on a single PC with an Athlon XP 2000+ CPU.

L0 L1 L2 stat/100000 Fs

30 10 10 1000 3.53042(11)
33 11 11 1000 3.78620(11)
36 12 12 1000 4.05312(12)
39 13 13 1000 4.33451(13)
42 14 14 1000 4.63149(15)
45 15 15 1000 4.94717(17)
48 16 16 1000 5.28138(19)
51 17 17 1000 5.63492(22)
54 18 18 1000 6.00959(27)
57 19 19 1000 6.40446(32)
60 20 20 1000 6.82040(38)
63 21 21 1000 7.25587(46)
66 22 22 1326 7.71339(50)
69 23 23 999 8.19094(72)
72 24 24 1033 8.68895(88)
75 25 25 1000 9.2063(12)
78 26 26 1050 9.7462(14)
81 27 27 1017 10.3062(19)
84 28 28 1015 10.8894(25)
87 29 29 1022 11.4881(33)
90 30 30 1008 12.1181(45)
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Figure 1: Fs−σL2 +0.5 ln σ as function of
√

σL for β
s
= 0.226102, 0.236025

and 0.27604. In all cases L1 = L2 = L and L0 = 3L. The values for σ
are taken from table 1. We have checked that the plot does not change
significantly, when σ is varied within the quoted errorbars. The dotted lines
should only guide the eye.
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Table 5: Results of fits with the ansatz in eq. (13) of the data at βs = 0.27604.
The interface tension has been fixed to σ = 0.204864.

Lmin c0 c2 χ2/d.o.f.

4 1.1500(14) -0.430(5) 0.81
5 1.154(5) -0.45(3) 0.92

Table 6: Results of fits with the ansatz in eq. (13) of the data at βs =
0.236025. The interface tension has been fixed to σ = 0.044023.

Lmin c0 c2 χ2/d.o.f.

7 1.9320(5) -0.1972(13) 4.22
8 1.9348(8) -0.208(3) 2.37
9 1.9383(13) -0.223(5) 0.86
10 1.9387(22) -0.225(11) 1.00
11 1.944(4) -0.258(22) 0.65
12 1.935(7) -0.195(48) 0.27

Our results for the remaining fit parameters c0 and c2 are shown in
tables 5, 6 and 7 for βs = 0.27604, 0.236025 and 0.226102, respectively. In
these fits, we have included data for all available lattice sizes L1 = L2 =
L ≥ Lmin. Throughout, we have only included data obtained with L0 = 3L.

To estimate the effect of the error in σ, we redid the fits for βs = 0.236025
with σ = 0.04402. This leads to slightly smaller values of c2, e.g. for
Lmin = 10 we get c2 = −0.227(11). We also repeated the fit for βs = 0.226102
using σ = 0.0105226 as input for the interface tension. This leads to a slight
decrease in c2; for instance, for Lmin = 22 we get c2 = −0.232(15) instead of
c2 = −0.227(15) for σ = 0.0105241; the error on the value of σ that is used
as input in the fits only plays a minor role.

The result c2 ≈ −0.45 at βs = 0.27604 is clearly inconsistent with the
prediction c2 = −0.25. However, we should note that ξ < 1 and we should
expect huge scaling corrections.

The fit results for βs = 0.236025 and βs = 0.226102 have similar features.
In both cases, the value of c2 increases as Lmin is increased. Also the χ2/d.o.f.
decreases as Lmin is increased. For βs = 0.236025, χ2/d.o.f. ≈ 1 is reached
at Lmin = 9, where c2 = −0.223(5). For the slightly larger Lmin = 11 we get:
c2 = −0.258(22), which is fully consistent with the theoretical prediction.
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Table 7: Results of fits with the ansatz in eq. (13) of the data at βs =
0.226102. The interface tension has been fixed to σ = 0.0105241.

Lmin c0 c2 χ2/d.o.f.

16 2.65513(51) -0.1855(16) 7.62
17 2.65853(65) -0.1994(24) 2.49
18 2.66067(85) -0.2090(34) 1.33
19 2.6627(11) -0.2187(49) 0.73
20 2.6636(15) -0.2240(72) 0.70
21 2.6656(20) -0.235(10) 0.52
22 2.6642(27) -0.227(15) 0.50

For βs = 0.226102, χ2/d.o.f. ≈ 1 is reached at Lmin = 19, where c2 =
−0.2187(49). For Lmin = 21 we get: c2 = −0.235(10), which is consistent
with the theoretical prediction within two units of the standard deviation.

Next we fitted our data for βs = 0.226102 with the ansatz:

Fs = σL2 + c0 +
c2

σL2
+

c4

(σL2)2
(14)

to check possible effects of higher order corrections on the numerical results
for c0 and c2. The results are displayed in table 8. Again, we have checked
that the error of the input value for σ is not relevant. Now the numerical
results for c2 are smaller than the theoretical prediction c2 = −0.25. Adding
higher order corrections to the fit does not allow for a more accurate nu-
merical determination of c2. However these fits clearly show that the small
deviation of c2 obtained from the fit to eq. (13) can be explained by higher
order corrections that are omitted in the ansatz.

Finally, let us briefly discuss the results for c0. The results are quite sta-
ble for different values of Lmin. Also, fits to eq. (13) and eq. (14) give consis-
tent results. As a final result, we quote c0 = 1.154(5), 1.944(5) and 2.665(5)
for βs = 0.27604, 0.236025 and 0.226102, respectively. Correspondingly, one
gets: c0 + 1

2 ln σ = 0.361(5), 0.382(5) and 0.388(5), which is somewhat larger
than the theoretical prediction G ≈ 0.29 from [38,46].

5.2 Results for L1 6= L2

For βs = 0.236025 we have also performed simulations for lattices with non-
square cross-section (L1 6= L2): the results of these simulations are given in
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Table 8: Fit results for the ansatz in eq. (14) of the data for Fs at βs =
0.226102. The interface tension has been fixed to σ = 0.0105241.

Lmin c0 c2 c4 χ2/d.o.f.

14 2.6629(10) -0.244(6) 0.103(9) 4.48
15 2.6696(14) -0.293(9) 0.187(15) 1.03
16 2.6731(20) -0.320(15) 0.240(26) 0.55
17 2.6713(27) -0.305(22) 0.207(42) 0.52
18 2.6716(37) -0.308(32) 0.214(70) 0.57

Table 9: Results for the interface free energy Fs as defined in eq. (3) at
βs = 0.236025. Results for L1 6= L2. We also give Fs− LO, where we have
used σ = 0.044023 and c1 = 1.944 as input.

L0 L1 L2 stat/100000 Fs Fs− LO NLO

36 10 12 1000 7.1670(6) –0.0489(6) –0.0487
45 10 15 693 8.4449(12) –0.0471(12) –0.0440
54 10 18 1000 9.6976(17) –0.0493(17) –0.0439
60 10 20 1029 10.5235(25) –0.0518(25) –0.0454
66 10 22 999 11.3466(36) –0.0521(36) –0.0478

table 9. In order to compare with the theoretical prediction for the NLO
contribution to Fs, we have subtracted the classical and the leading order
contribution from Fs. To this end, we have used σ = 0.044023 from table 1
and c0 = 1.944 from the fits summarised in table 6. For comparison, in
the last column of table 9 we give the theoretical prediction for the NLO
contribution — see eq. (6). The absolute value of the numerical results
is found to be about 10% larger than the theoretical prediction for the
NLO contribution. This can be interpreted as an effect due to higher order
corrections. It is interesting to observe that such higher order terms become
more and more important as the ratio L2/L1 increases: this is an effect we
already observed in our previous analysis of the Polyakov loop correlators [1].
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6 Conclusions

In this work, we studied interfaces in the 3D Ising model with periodic
boundary conditions. We compared our numerical results for the interface
free energy with predictions derived from the Nambu-Goto effective string
model, which is essentially equivalent to the capillary wave model. Com-
pared with previous work on the problem [37], the statistical errors are
reduced by a factor of about 30, which allows for a quantitative check of
the next-to-leading order (i.e. beyond the free string approximation) pre-
diction. For the two coupling values closest to the phase transition, we
found for a linear extension

√
σL ' 2 of the interface a good agreement

with the next-to-leading order prediction of the Nambu-Goto model. Ex-
pressed in terms of the inverse deconfinent temperature Nt this corresponds
to L ' 2.5Nt. In the case of the Polyakov loop correlation function we found
in [1] a similar behaviour along the compactified direction of the Polyakov

loop correlator. On the contrary, along the direction with Dirichlet bound-
ary conditions clear deviations from the Nambu-Goto string prediction were
observed for distances of the order of 2.5Nt. In fact, we actually found that
the Nambu-Goto string fits the numerical data for the interquark potential
at low temperatures less well than its free string approximation. Even if
the presence of a boundary term in the effective string action is ruled out
(at least in three dimensions) by string duality arguments [24]5, the above
comparison between the present results and our previous analysis on the
Polyakov loop correlators clearly shows that some kind of boundary correc-
tion is present in the latter case.

By virtue of the absence of boundary effects, we think that the interface
free energy discussed in this paper is the perfect setting to study limits
and merits of effective string models and also, if possible, to improve these
effective descriptions. In this respect it would be very interesting to further
analyze the deviations from the Nambu-Goto predictions which we observe
in the range

√
σL < 2. Understanding the origin of these deviations remains

one of the most intriguing challenges towards a consistent and satisfactory
effective string description of the confining potential in lattice gauge theories.

5Notice however that the argument of [24] only rules out the dominant boundary cor-
rection (the one which can be reinterpreted as a shift in the interquark distance [9]) but
it does not exclude possible higher order boundary corrections. Notice also that the ab-
sence of such a dominant boundary corrections is compatible with the numerical data (see
again [9]) on short distance Polyakov loop correlators.
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