11 research outputs found

    Gamma Power Is Phase-Locked to Posterior Alpha Activity

    Get PDF
    Neuronal oscillations in various frequency bands have been reported in numerous studies in both humans and animals. While it is obvious that these oscillations play an important role in cognitive processing, it remains unclear how oscillations in various frequency bands interact. In this study we have investigated phase to power locking in MEG activity of healthy human subjects at rest with their eyes closed. To examine cross-frequency coupling, we have computed coherence between the time course of the power in a given frequency band and the signal itself within every channel. The time-course of the power was calculated using a sliding tapered time window followed by a Fourier transform. Our findings show that high-frequency gamma power (30–70 Hz) is phase-locked to alpha oscillations (8–13 Hz) in the ongoing MEG signals. The topography of the coupling was similar to the topography of the alpha power and was strongest over occipital areas. Interestingly, gamma activity per se was not evident in the power spectra and only became detectable when studied in relation to the alpha phase. Intracranial data from an epileptic subject confirmed these findings albeit there was slowing in both the alpha and gamma band. A tentative explanation for this phenomenon is that the visual system is inhibited during most of the alpha cycle whereas a burst of gamma activity at a specific alpha phase (e.g. at troughs) reflects a window of excitability

    Animal models for aberrations of gonadotropin action

    Get PDF
    During the last two decades a large number of genetically modified mouse lines with altered gonadotropin action have been generated. These mouse lines fall into three categories: the lack-of-function mice, gain-of-function mice, and the mice generated by breeding the abovementioned lines with other disease model lines. The mouse strains lacking gonadotropin action have elucidated the necessity of the pituitary hormones in pubertal development and function of gonads, and revealed the processes from the original genetic defect to the pathological phenotype such as hypo- or hypergonadotropic hypogonadism. Conversely, the strains of the second group depict consequences of chronic gonadotropin action. The lines vary from those expressing constitutively active receptors and those secreting follicle-stimulating hormone (FSH) with slowly increasing amounts to those producing human choriogonadotropin (hCG), amount of which corresponds to 2000-fold luteinizing hormone (LH)/hCG biological activity. Accordingly, the phenotypes diverge from mild anomalies and enhanced fertility to disrupted gametogenesis, but eventually chronic, enhanced and non-pulsatile action of both FSH and LH leads to female and male infertility and/or hyper- and neoplasias in most of the gonadotropin gain-of-function mice. Elevated gonadotropin levels also alter the function of several extra-gonadal tissues either directly or indirectly via increased sex steroid production. These effects include promotion of tumorigenesis in tissues such as the pituitary, mammary and adrenal glands. Finally, the crossbreedings of the current mouse strains with other disease models are likely to uncover the contribution of gonadotropins in novel biological systems, as exemplified by the recent crossbreed of LHCG receptor deficient mice with Alzheimer disease mice

    The new BDP-98 600-m drill core from Lake Baikal: A key late Cenozoic sedimentary section in continental Asia

    No full text
    The new 600-m drill core BDP-98 from the Academician Ridge of Lake Baikal recovered a continuous sedimentary record of the past 10 Ma. The entire section is represented by lacustrine sediments, which gradually change from distal deltaic facies at the bottom of the section to fine undisturbed hemipelagic sediments of the upper 300-m interval. The entire 10-Ma lacustrine section contains abundant diatoms, thus allowing extension of Plio-Pleistocene diatom and biogenic silica records into the Miocene. Above the Matuyama/Gauss paleomagnetic reversal boundary, the BDP-98 record contains clearly delineated glacial/interglacial lithologic cycles. Below this boundary the diatom signal is quite different: average diatom contents are higher and variations are of lower amplitude. Although most likely paleoclimatic in origin, these variation presumably reflect past changes in the moisture regime of southeast Siberia under conditions of warm subtropical climate during the Miocene and Early-Middle Pliocene. The continuous BDP-98 drill core, which covers the hiati present in the composite continental sections of the Baikal region, is a key section for reconstructing the Neogene-Quaternary climatic evolution of continental Asia. The BDP-98 section also places several important time constraints on the rifting history of Lake Baikal by providing reliable correlation of lithological and physical properties of the drill core sediments with calculated positions of the acoustic reflection boundaries interpreted from multichannel seismic studies. The lithologic composition indicates that, on the stable block of Academician Ridge where the BDP-96 and BDP-98 drill sites are located, acoustic reflection boundaries are not associated with major erosional events, but instead result from changes in sediment density and composition. Several lithologic indices further suggest that significant changes have occurred in the physics and chemistry of Lake Baikal waters, affecting the carbonate equilibrium and oxygen regime of Baikal. © 2001 Published by Elsevier Science Ltd

    Does Greater Low Frequency EEG Activity in Normal Immaturity and in Children with Epilepsy Arise in the Same Neuronal Network?

    Full text link
    Greater low frequency power (<8 Hz) in the electroencephalogram (EEG) at rest is normal in the immature developing brain of children when compared to adults. Children with epilepsy also have greater low frequency interictal resting EEG activity. Whether these power elevations reflect brain immaturity due to a developmental lag or the underlying epileptic pathophysiology is unclear. The present study addresses this question by analyzing spectral EEG topographies and sources for normally developing children and children with epilepsy. We first compared the resting EEG of healthy children to that of healthy adults to isolate effects related to normal brain immaturity. Next, we compared the EEG from 10 children with generalized cryptogenic epilepsy to the EEG of 24 healthy children to isolate effects related to epilepsy. Spectral analysis revealed that global low (delta: 1-3 Hz, theta: 4-7 Hz), medium (alpha: 8-12 Hz) and high (beta: 13-25 Hz) frequency EEG activity was greater in children without epilepsy compared to adults, and even further elevated for children with epilepsy. Topographical and tomographic EEG analyses showed that normal immaturity corresponded to greater delta and theta activity at fronto-central scalp and brain regions, respectively. In contrast, the epilepsy-related activity elevations were predominantly in the alpha band at parieto-occipital electrodes and brain regions, respectively. We conclude that lower frequency activity can be a sign of normal brain immaturity or brain pathology depending on the specific topography and frequency of the oscillating neuronal network
    corecore