722 research outputs found
Entropy-induced Microphase Separation in Hard Diblock Copolymers
Whereas entropy can induce phase behavior that is as rich as seen in
energetic systems, microphase separation remains a very rare phenomenon in
entropic systems. In this paper, we present a density functional approach to
study the possibility of entropy-driven microphase separation in diblock
copolymers. Our model system consists of copolymers composed of freely-jointed
slender hard rods. The two types of monomeric segments have comparable lengths,
but a significantly different diameter, the latter difference providing the
driving force for the phase separation. At the same time these systems can also
exhibit liquid crystalline phases. We treat this system in the appropriate
generalization of the Onsager approximation to chain-like particles. Using a
linear stability (bifurcation) analysis, we analytically determine the onset of
the microseparated and the nematic phases for long chains. We find that for
very long chains the microseparated phase always preempts the nematic. In the
limit of infinitely long chains, the correlations within the chain become
Gaussian and the approach becomes exact. This allows us to define a Gaussian
limit in which the theory strongly simplifies and the competition between
microphase separation and liquid crystal formation can be studied essentially
analytically. Our main results are phase diagrams as a function of the
effective diameter difference, the segment composition and the length ratio of
the segments. We also determine the amplitude of the positional order as a
function of position along the chain at the onset of the microphase separation
instability. Finally, we give suggestions as to how this type of
entropy-induced microphase separation could be observed experimentally.Comment: 16 pages, 7 figure
Elasticity Theory and Shape Transitions of Viral Shells
Recently, continuum elasticity theory has been applied to explain the shape
transition of icosahedral viral capsids - single-protein-thick crystalline
shells - from spherical to buckled/faceted as their radius increases through a
critical value determined by the competition between stretching and bending
energies of a closed 2D elastic network. In the present work we generalize this
approach to capsids with non-icosahedral symmetries, e.g., spherocylindrical
and conical shells. One key new physical ingredient is the role played by
nonzero spontaneous curvature. Another is associated with the special way in
which the energy of the twelve topologically-required five-fold sites depends
on the background local curvature of the shell in which they are embedded.
Systematic evaluation of these contributions leads to a shape phase diagram in
which transitions are observed from icosahedral to spherocylindrical capsids as
a function of the ratio of stretching to bending energies and of the
spontaneous curvature of the 2D protein network. We find that the transition
from icosahedral to spherocylindrical symmetry is continuous or weakly
first-order near the onset of buckling, leading to extensive shape degeneracy.
These results are discussed in the context of experimentally observed
variations in the shapes of a variety of viral capsids.Comment: 53 pages, 17 figure
Using low energy medical cyclotrons to produce 99mTc - Technetium
This article was retracted on 05 February 2014This paper refers to work in progress, addressing the global trouble in delivering 99mTc to Nuclear Medicine Departments, Aiming to develop an efficient, safe and economical way to directly produce Technetium 99metastable (99mTc) using lowenergy - so-called “medical” - cyclotrons. The present delivery strategy has intrinsic limitations because it is not only based on old nuclear reactors, but also limits the weekly agenda workflow. Our approach is distinct, and is based on the broad distribution network of the low energy cyclotrons and the accessibility of Molybdenum 100 (100Mo) as the target material, so the system here presented, is not based on the use of Nuclear Reactors and highly enriched (or even low enriched) Uranium 235 (235U), but entirely complying with the current international trends and directives, concerning the need to reduce the use of this potential highly critical target material. The direct production technique is based on the nuclear reaction 100Mo(p,2n)99mTc whose production yields have already been widely documented. The 99mTc is produced in a routine, reliable and efficient manner that, remaining always flexible, entirely blends with established protocols.info:eu-repo/semantics/publishedVersio
The lamellar-to-isotropic transition in ternary amphiphilic systems
We study the dependence of the phase behavior of ternary amphiphilic systems
on composition and temperature. Our analysis is based on a curvature elastic
model of the surfactant film with sufficiently large spontaneous curvature and
sufficiently negative saddle-splay modulus that the stable phases are the
lamellar phase and a droplet microemulsion. In addition to the curvature
energy, we consider the contributions to the free energy of the long-ranged van
der Waals interaction and of the undulation modes. We find that for bending
rigidities of order k_B T, the lamellar phase extends further and further into
the water apex of the phase diagram as the phase inversion temperature is
approached, in good agreement with experimental results.Comment: LaTeX2e, 11 pages with references and 2 eps figures included,
submitted to Europhys. Let
Organized condensation of worm-like chains
We present results relevant to the equilibrium organization of DNA strands of
arbitrary length interacting with a spherical organizing center, suggestive of
DNA-histone complexation in nucleosomes. We obtain a rich phase diagram in
which a wrapping state is transformed into a complex multi-leafed, rosette
structure as the adhesion energy is reduced. The statistical mechanics of the
"melting" of a rosette can be mapped into an exactly soluble one-dimensional
many-body problem.Comment: 15 pages, 2 figures in a pdf fil
On the multiplicativity of quantum cat maps
The quantum mechanical propagators of the linear automorphisms of the
two-torus (cat maps) determine a projective unitary representation of the theta
group, known as Weil's representation. We prove that there exists an
appropriate choice of phases in the propagators that defines a proper
representation of the theta group. We also give explicit formulae for the
propagators in this representation.Comment: Revised version: proof of the main theorem simplified. 21 page
Induced Crystallization of Polyelectrolyte-Surfactant Complexes at the Gas-Water Interface
Synchrotron-X-ray and surface tension studies of a strong polyelectrolyte
(PE) in the semi-dilute regime (~ 0.1M monomer-charges) with varying surfactant
concentrations show that minute surfactant concentrations induce the formation
of a PE-surfactant complex at the gas/solution interface. X-ray reflectivity
and grazing angle X-ray diffraction (GIXD) provide detailed information of the
top most layer, where it is found that the surfactant forms a two-dimensional
liquid-like monolayer, with a noticeable disruption of the structure of water
at the interface. With the addition of salt (NaCl) columnar-crystals with
distorted-hexagonal symmetry are formed.Comment: 4 pages, 5 eps figure
Why is the condensed phase of DNA preferred at higher temperature? DNA compaction in the presence of a multivalent cation
Upon the addition of multivalent cations, a giant DNA chain exhibits a large
discrete transition from an elongated coil into a folded compact state. We
performed single-chain observation of long DNAs in the presence of a
tetravalent cation (spermine), at various temperatures and monovalent salt
concentrations. We confirmed that the compact state is preferred at higher
temperatures and at lower monovalent salt concentrations. This result is
interpreted in terms of an increase in the net translational entropy of small
ions due to ionic exchange between higher and lower valence ions.Comment: 4pages,3figure
Peripheral Blood Cell Gene Expression Diagnostic for Identifying Symptomatic Transthyretin Amyloidosis Patients: Male and Female Specific Signatures
BACKGROUND:
Early diagnosis of familial transthyretin (TTR) amyloid diseases remains challenging because of variable disease penetrance. Currently, patients must have an amyloid positive tissue biopsy to be eligible for disease-modifying therapies. Endomyocardial biopsies are typically amyloid positive when cardiomyopathy is suspected, but this disease manifestation is generally diagnosed late. Early diagnosis is often difficult because patients exhibit apparent symptoms of polyneuropathy, but have a negative amyloid biopsy. Thus, there is a pressing need for an additional early diagnostic strategy for TTR-aggregation-associated polyneuropathy and cardiomyopathy.
METHODS AND FINDINGS:
Global peripheral blood cell mRNA expression profiles from 263 tafamidis-treated and untreated V30M Familiar Amyloid Neuropathy patients, asymptomatic V30M carriers, and healthy, age- and sex-matched controls without TTR mutations were used to differentiate symptomatic from asymptomatic patients. We demonstrate that blood cell gene expression patterns reveal sex-independent, as well as male- and female-specific inflammatory signatures in symptomatic FAP patients, but not in asymptomatic carriers. These signatures differentiated symptomatic patients from asymptomatic V30M carriers with >80% accuracy. There was a global downregulation of the eIF2 pathway and its associated genes in all symptomatic FAP patients. We also demonstrated that the molecular scores based on these signatures significantly trended toward normalized values in an independent cohort of 46 FAP patients after only 3 months of tafamidis treatment.
CONCLUSIONS:
This study identifies novel molecular signatures that differentiate symptomatic FAP patients from asymptomatic V30M carriers as well as affected males and females. We envision using this approach, initially in parallel with amyloid biopsies, to identify individuals who are asymptomatic gene carriers that may convert to FAP patients. Upon further validation, peripheral blood cell mRNA expression profiling could become an independent early diagnostic. This quantitative gene expression signature for symptomatic FAP could also become a biomarker to demonstrate significant disease-modifying effects of drugs and drug candidates. For example, when new disease modifiers are being evaluated in a FAP clinical trial, such surrogate biomarkers have the potential to provide an objective, quantitative and mechanistic molecular diagnostic of disease response to therapy.We acknowledge the following sources of research funding: NIH U19 A1063603 (DRS, SMK), NIH DK46335 (JWK) and NIH R01AG19259 (JNB)info:eu-repo/semantics/publishedVersio
- …