1,606 research outputs found

    Liquid-liquid coexistence in the phase diagram of a fluid confined in fractal porous materials

    Full text link
    Multicanonical ensemble sampling simulations have been performed to calculate the phase diagram of a Lennard-Jones fluid embedded in a fractal random matrix generated through diffusion limited cluster aggregation. The study of the system at increasing size and constant porosity shows that the results are independent from the matrix realization but not from the size effects. A gas-liquid transition shifted with respect to bulk is found. On growing the size of the system on the high density side of the gas-liquid coexistence curve it appears a second coexistence region between two liquid phases. These two phases are characterized by a different behaviour of the local density inside the interconnected porous structure at the same temperature and chemical potential.Comment: 5 pages, 4 figures. To be published in Europhys. Letter

    Perioperative Hypothermia (33°C) Does Not Increase theOccurrence of Cardiovascular Events in PatientsUndergoing Cerebral Aneurysm SurgeryFindings from the Intraoperative Hypothermia for AneurysmSurgery Trial

    Get PDF
    The IHAST Trial randomized patients undergoing cerebral aneurysm surgery to intraoperative hypothermia or normothermia. Cardiovascular events were prospectively followed until 3-month follow-up and were compared in hypothermic and normothermic patients. Conclusion: In patients undergoing cerebral aneurysm surgery, perioperative hypothermia was not associated with an increased occurrence of cardiovascular events

    A Cross-Sectional Survey of Anesthetic Airway Equipment and Airway Management Practices in Uganda.

    Get PDF
    BACKGROUND: Anesthesia-related causes contribute to a significant proportion of perioperative deaths, especially in low and middle-income countries (LMICs). There is evidence that complications related to failed airway management are a significant contributor to perioperative morbidity and mortality. While existing data have highlighted the magnitude of airway management complications in LMICs, there are inadequate data to understand their root causes. This study aimed to pilot an airway management capacity tool that evaluates airway management resources, provider practices, and experiences with difficult airways in an attempt to better understand potential contributing factors to airway management challenges. METHODS: We developed a novel airway management capacity assessment tool through a nonsystematic review of existing literature on anesthesia and airway management in LMICs, internationally recognized difficult airway algorithms, minimum standards for equipment, the safe practice of anesthesia, and the essential medicines and health supplies list of Uganda. We distributed the survey tool during conferences and workshops, to anesthesia care providers from across the spectrum of surgical care facilities in Uganda. The data were analyzed using descriptive methods. RESULTS: Between May 2017 and May 2018, 89 of 93 surveys were returned (17% of anesthesia providers in the country) from all levels of health facilities that provide surgical services in Uganda. Equipment for routine airway management was available to all anesthesia providers surveyed, but with a limited range of sizes. Pediatric airway equipment was always available 54% of the time. There was limited availability of capnography (15%), video laryngoscopes (4%), cricothyroidotomy kits (6%), and fiber-optic bronchoscopes (7%). Twenty-one percent (18/87) of respondents reported experiencing a "can't intubate, can't ventilate" (CICV) scenario in the 12 months preceding the survey, while 63% (54/86) reported experiencing at least 1 CICV during their career. Eighty-five percent (74/87) of respondents reported witnessing a severe airway management complication during their career, with 21% (19/89) witnessing a death as a result of a CICV scenario. CONCLUSIONS: We have developed and implemented an airway management capacity tool that describes airway management practices in Uganda. Using this tool, we have identified significant gaps in access to airway management resources. Gaps identified by the survey, along with advocacy by the Association of Anesthesiologists of Uganda, in partnership with the Ugandan Ministry of Health, have led to some progress in closing these gaps. Expanding the availability of airway management resources further, providing more airway management training, and identifying opportunities to support skilled workforce expansion have the potential to improve perioperative safety in Uganda

    Adsorption in non interconnected pores open at one or at both ends: A reconsideration of the origin of the hysteresis phenomenon

    Get PDF
    We report on an experimental study of adsorption isotherme of nitrogen onto porous silicon with non interconnected pores open at one or at both ends in order to check for the first time the old (1938) but always current idea based on Cohan's description which suggests that the adsorption of gaz should occur reversibly in the first case and irreversibly in the second one. Hysteresis loops, the shape of which is usually associated to interconnections in porous media, are observed whether the pores are open at one or at both ends in contradiction with Cohan's model.Comment: 5 pages, 4 EPS figure

    Simple Model of Capillary Condensation in porous media

    Full text link
    We employ a simple model to describe the phase behavior of 4He and Ar in a hypothetical porous material consisting of a regular array of infinitely long, solid, parallel cylinders. We find that high porosity geometries exhibit two transitions: from vapor to film and from film to capillary condensed liquid. At low porosity, the film is replaced by a ``necking'' configuration, and for a range of intermediate porosity there are three transitions: from vapor to film, from film to necking and from necking to a capillary condensed phase.Comment: 14 pages, 7 figure

    Thermodynamics, Structure, and Dynamics of Water Confined between Hydrophobic Plates

    Full text link
    We perform molecular dynamics simulations of 512 water-like molecules that interact via the TIP5P potential and are confined between two smooth hydrophobic plates that are separated by 1.10 nm. We find that the anomalous thermodynamic properties of water are shifted to lower temperatures relative to the bulk by 40\approx 40 K. The dynamics and structure of the confined water resemble bulk water at higher temperatures, consistent with the shift of thermodynamic anomalies to lower temperature. Due to this TT shift, our confined water simulations (down to T=220T = 220 K) do not reach sufficiently low temperature to observe a liquid-liquid phase transition found for bulk water at T215T\approx 215 K using the TIP5P potential. We find that the different crystalline structures that can form for two different separations of the plates, 0.7 nm and 1.10 nm, have no counterparts in the bulk system, and discuss the relevance to experiments on confined water.Comment: 31 pages, 14 figure

    Does Young's equation hold on the nanoscale? A Monte Carlo test for the binary Lennard-Jones fluid

    Full text link
    When a phase-separated binary (A+BA+B) mixture is exposed to a wall, that preferentially attracts one of the components, interfaces between A-rich and B-rich domains in general meet the wall making a contact angle θ\theta. Young's equation describes this angle in terms of a balance between the ABA-B interfacial tension γAB\gamma_{AB} and the surface tensions γwA\gamma_{wA}, γwB\gamma_{wB} between, respectively, the AA- and BB-rich phases and the wall, γABcosθ=γwAγwB\gamma _{AB} \cos \theta =\gamma_{wA}-\gamma_{wB}. By Monte Carlo simulations of bridges, formed by one of the components in a binary Lennard-Jones liquid, connecting the two walls of a nanoscopic slit pore, θ\theta is estimated from the inclination of the interfaces, as a function of the wall-fluid interaction strength. The information on the surface tensions γwA\gamma_{wA}, γwB\gamma_{wB} are obtained independently from a new thermodynamic integration method, while γAB\gamma_{AB} is found from the finite-size scaling analysis of the concentration distribution function. We show that Young's equation describes the contact angles of the actual nanoscale interfaces for this model rather accurately and location of the (first order) wetting transition is estimated.Comment: 6 pages, 6 figure

    Adsorption hysteresis and capillary condensation in disordered porous solids: a density functional study

    Full text link
    We present a theoretical study of capillary condensation of fluids adsorbed in mesoporous disordered media. Combining mean-field density functional theory with a coarse-grained description in terms of a lattice-gas model allows us to investigate both the out-of-equilibrium (hysteresis) and the equilibrium behavior. We show that the main features of capillary condensation in disordered solids result from the appearance of a complex free-energy landscape with a large number of metastable states. We detail the numerical procedures for finding these states, and the presence or absence of transitions in the thermodynamic limit is determined by careful finite-size studies.Comment: 30 pages, 18 figures. To appear in J. Phys.: Condens. Matte
    corecore