159 research outputs found

    Dominance of extreme statistics in a prototype many-body Brownian ratchet

    Full text link
    Many forms of cell motility rely on Brownian ratchet mechanisms that involve multiple stochastic processes. We present a computational and theoretical study of the nonequilibrium statistical dynamics of such a many-body ratchet, in the specific form of a growing polymer gel that pushes a diffusing obstacle. We find that oft-neglected correlations among constituent filaments impact steady-state kinetics and significantly deplete the gel's density within molecular distances of its leading edge. These behaviors are captured quantitatively by a self-consistent theory for extreme fluctuations in filaments' spatial distribution.Comment: 5 pages with 3 figures + 20 pages of Supplementary Material with 2 figures. Updated to agree with published version; published as a Communication in J. Chem. Phy

    Coexistence between fluid and crystalline phases of proteins in photosynthetic membranes

    Get PDF
    Photosystem II (PSII) and its associated light-harvesting complex II (LHCII) are highly concentrated in the stacked grana regions of photosynthetic thylakoid membranes. Within the membrane, PSII-LHCII supercomplexes can be arranged in disordered packings, ordered arrays, or mixtures thereof. The physical driving forces underlying array formation are unknown, complicating attempts to determine a possible functional role for arrays in regulating light harvesting or energy conversion efficiency. Here we introduce a coarse-grained model of protein interactions in coupled photosynthetic membranes, focusing on just two particle types that feature simple shapes and potential energies motivated by structural studies. Reporting on computer simulations of the model's equilibrium fluctuations, we demonstrate its success in reproducing diverse structural features observed in experiments, including extended PSII-LHCII arrays. Free energy calculations reveal that the appearance of arrays marks a phase transition from the disordered fluid state to a system-spanning crystal, which can easily be arrested by thermodynamic constraints or slow dynamics. The region of fluid-crystal coexistence is broad, encompassing much of the physiologically relevant parameter regime. Our results suggest that grana membranes lie at or near phase coexistence, conferring significant structural and functional flexibility to this densely packed membrane protein system.Comment: 11 pages, 5 figure

    Symmetrized Drude Oscillator Force Fields Improve Numerical Performance of Polarizable Molecular Dynamics

    Full text link
    Drude oscillator potentials are a popular and computationally efficient class of polarizable models that represent each polarizable atom as a positively charged Drude core harmonically bound to a negatively charged Drude shell. We show that existing force fields that place all non-Coulomb forces on the Drude core and none on the shell inadvertently couple the dipole to non-Coulombic forces. This introduces errors where interactions with neutral particles can erroneously induce atomic polarization, leading to spurious polarizations in the absence of an electric field and exacerbating violations of equipartition in the employed Carr-Parinello scheme. A suitable symmetrization of the interaction potential that correctly splits the force between the Drude core and shell can correct this shortcoming, improving the stability and numerical performance of Drude oscillator based simulations. The symmetrization procedure is straightforward and only requires the rescaling of a few force field parameters
    • …
    corecore