346 research outputs found

    Anomalous diffusion as a signature of collapsing phase in two dimensional self-gravitating systems

    Full text link
    A two dimensional self-gravitating Hamiltonian model made by NN fully-coupled classical particles exhibits a transition from a collapsing phase (CP) at low energy to a homogeneous phase (HP) at high energy. From a dynamical point of view, the two phases are characterized by two distinct single-particle motions : namely, superdiffusive in the CP and ballistic in the HP. Anomalous diffusion is observed up to a time τ\tau that increases linearly with NN. Therefore, the finite particle number acts like a white noise source for the system, inhibiting anomalous transport at longer times.Comment: 10 pages, Revtex - 3 Figs - Submitted to Physical Review

    Metal-insulator transitions in cyclotron resonance of periodic nanostructures due to avoided band crossings

    Full text link
    A recently found metal-insulator transition in a model for cyclotron resonance in a two-dimensional periodic potential is investigated by means of spectral properties of the time evolution operator. The previously found dynamical signatures of the transition are explained in terms of avoided band crossings due to the change of the external electric field. The occurrence of a cross-like transport is predicted and numerically confirmed

    Avalanches of Bose-Einstein Condensates in Leaking Optical Lattices

    Full text link
    One of the most fascinating experimental achievements of the last decade was the realization of Bose-Einstein Condensation (BEC) of ultra-cold atoms in optical lattices (OL's). The extraordinary level of control over these structures allows us to investigate complex solid state phenomena and the emerging field of ``atomtronics'' promises a new generation of nanoscale devices. It is therefore of fundamental and technological importance to understand their dynamical properties. Here we study the outgoing atomic flux of BECs loaded in an one-dimensional OL with leaking edges, using a mean field description provided by the Discrete Non-Linear Schrodinger Equation (DNLSE). We demonstrate that the atom population inside the OL decays in avalanches of size JJ. For intermediate values of the interatomic interaction strength their distribution P(J){\cal P}(J) follows a power law i.e. P(J)1/Jα{\cal P}(J)\sim1/J^{\alpha} characterizing systems at phase transition. This scale free behaviour of P(J){\cal P}(J) reflects the complexity and the hierarchical structure of the underlying classical mixed phase space. Our results are relevant in a variety of contexts (whenever DNLSE is adequate), most prominently the light emmitance from coupled non-linear optics waveguides.Comment: 7 pages and 3 figure

    What determines the spreading of a wave packet?

    Full text link
    The multifractal dimensions D2^mu and D2^psi of the energy spectrum and eigenfunctions, resp., are shown to determine the asymptotic scaling of the width of a spreading wave packet. For systems where the shape of the wave packet is preserved the k-th moment increases as t^(k*beta) with beta=D2^mu/D2^psi, while in general t^(k*beta) is an optimal lower bound. Furthermore, we show that in d dimensions asymptotically in time the center of any wave packet decreases spatially as a power law with exponent D_2^psi - d and present numerical support for these results.Comment: Physical Review Letters to appear, 4 pages postscript with figure

    From deterministic dynamics to kinetic phenomena

    Full text link
    We investigate a one-dimenisonal Hamiltonian system that describes a system of particles interacting through short-range repulsive potentials. Depending on the particle mean energy, ϵ\epsilon, the system demonstrates a spectrum of kinetic regimes, characterized by their transport properties ranging from ballistic motion to localized oscillations through anomalous diffusion regimes. We etsablish relationships between the observed kinetic regimes and the "thermodynamic" states of the system. The nature of heat conduction in the proposed model is discussed.Comment: 4 pages, 4 figure

    Experimental evidence for the role of cantori as barriers in a quantum system

    Full text link
    We investigate the effect of cantori on momentum diffusion in a quantum system. Ultracold caesium atoms are subjected to a specifically designed periodically pulsed standing wave. A cantorus separates two chaotic regions of the classical phase space. Diffusion through the cantorus is classically predicted. Quantum diffusion is only significant when the classical phase-space area escaping through the cantorus per period greatly exceeds Planck's constant. Experimental data and a quantum analysis confirm that the cantori act as barriers.Comment: 19 pages including 9 figures, Accepted for publication in Physical Review E in March 199

    Equilibrium and dynamical properties of two dimensional self-gravitating systems

    Full text link
    A system of N classical particles in a 2D periodic cell interacting via long-range attractive potential is studied. For low energy density UU a collapsed phase is identified, while in the high energy limit the particles are homogeneously distributed. A phase transition from the collapsed to the homogeneous state occurs at critical energy U_c. A theoretical analysis within the canonical ensemble identifies such a transition as first order. But microcanonical simulations reveal a negative specific heat regime near UcU_c. The dynamical behaviour of the system is affected by this transition : below U_c anomalous diffusion is observed, while for U > U_c the motion of the particles is almost ballistic. In the collapsed phase, finite NN-effects act like a noise source of variance O(1/N), that restores normal diffusion on a time scale diverging with N. As a consequence, the asymptotic diffusion coefficient will also diverge algebraically with N and superdiffusion will be observable at any time in the limit N \to \infty. A Lyapunov analysis reveals that for U > U_c the maximal exponent \lambda decreases proportionally to N^{-1/3} and vanishes in the mean-field limit. For sufficiently small energy, in spite of a clear non ergodicity of the system, a common scaling law \lambda \propto U^{1/2} is observed for any initial conditions.Comment: 17 pages, Revtex - 15 PS Figs - Subimitted to Physical Review E - Two column version with included figures : less paper waste

    Three-point correlations for quantum star graphs

    Full text link
    We compute the three point correlation function for the eigenvalues of the Laplacian on quantum star graphs in the limit where the number of edges tends to infinity. This extends a work by Berkolaiko and Keating, where they get the 2-point correlation function and show that it follows neither Poisson, nor random matrix statistics. It makes use of the trace formula and combinatorial analysis.Comment: 10 pages, 2 figure

    Analysis of chaotic motion and its shape dependence in a generalized piecewise linear map

    Full text link
    We analyse the chaotic motion and its shape dependence in a piecewise linear map using Fujisaka's characteristic function method. The map is a generalization of the one introduced by R. Artuso. Exact expressions for diffusion coefficient are obtained giving previously obtained results as special cases. Fluctuation spectrum relating to probability density function is obtained in a parametric form. We also give limiting forms of the above quantities. Dependence of diffusion coefficient and probability density function on the shape of the map is examined.Comment: 4 pages,4 figure

    Two interacting Hofstadter butterflies

    Full text link
    The problem of two interacting particles in a quasiperiodic potential is addressed. Using analytical and numerical methods, we explore the spectral properties and eigenstates structure from the weak to the strong interaction case. More precisely, a semiclassical approach based on non commutative geometry techniques permits to understand the intricate structure of such a spectrum. An interaction induced localization effect is furthermore emphasized. We discuss the application of our results on a two-dimensional model of two particles in a uniform magnetic field with on-site interaction.Comment: revtex, 12 pages, 11 figure
    corecore