346 research outputs found
Anomalous diffusion as a signature of collapsing phase in two dimensional self-gravitating systems
A two dimensional self-gravitating Hamiltonian model made by
fully-coupled classical particles exhibits a transition from a collapsing phase
(CP) at low energy to a homogeneous phase (HP) at high energy. From a dynamical
point of view, the two phases are characterized by two distinct single-particle
motions : namely, superdiffusive in the CP and ballistic in the HP. Anomalous
diffusion is observed up to a time that increases linearly with .
Therefore, the finite particle number acts like a white noise source for the
system, inhibiting anomalous transport at longer times.Comment: 10 pages, Revtex - 3 Figs - Submitted to Physical Review
Metal-insulator transitions in cyclotron resonance of periodic nanostructures due to avoided band crossings
A recently found metal-insulator transition in a model for cyclotron
resonance in a two-dimensional periodic potential is investigated by means of
spectral properties of the time evolution operator. The previously found
dynamical signatures of the transition are explained in terms of avoided band
crossings due to the change of the external electric field. The occurrence of a
cross-like transport is predicted and numerically confirmed
Avalanches of Bose-Einstein Condensates in Leaking Optical Lattices
One of the most fascinating experimental achievements of the last decade was
the realization of Bose-Einstein Condensation (BEC) of ultra-cold atoms in
optical lattices (OL's). The extraordinary level of control over these
structures allows us to investigate complex solid state phenomena and the
emerging field of ``atomtronics'' promises a new generation of nanoscale
devices. It is therefore of fundamental and technological importance to
understand their dynamical properties. Here we study the outgoing atomic flux
of BECs loaded in an one-dimensional OL with leaking edges, using a mean field
description provided by the Discrete Non-Linear Schrodinger Equation (DNLSE).
We demonstrate that the atom population inside the OL decays in avalanches of
size . For intermediate values of the interatomic interaction strength their
distribution follows a power law i.e. characterizing systems at phase transition. This scale
free behaviour of reflects the complexity and the hierarchical
structure of the underlying classical mixed phase space. Our results are
relevant in a variety of contexts (whenever DNLSE is adequate), most
prominently the light emmitance from coupled non-linear optics waveguides.Comment: 7 pages and 3 figure
What determines the spreading of a wave packet?
The multifractal dimensions D2^mu and D2^psi of the energy spectrum and
eigenfunctions, resp., are shown to determine the asymptotic scaling of the
width of a spreading wave packet. For systems where the shape of the wave
packet is preserved the k-th moment increases as t^(k*beta) with
beta=D2^mu/D2^psi, while in general t^(k*beta) is an optimal lower bound.
Furthermore, we show that in d dimensions asymptotically in time the center of
any wave packet decreases spatially as a power law with exponent D_2^psi - d
and present numerical support for these results.Comment: Physical Review Letters to appear, 4 pages postscript with figure
From deterministic dynamics to kinetic phenomena
We investigate a one-dimenisonal Hamiltonian system that describes a system
of particles interacting through short-range repulsive potentials. Depending on
the particle mean energy, , the system demonstrates a spectrum of
kinetic regimes, characterized by their transport properties ranging from
ballistic motion to localized oscillations through anomalous diffusion regimes.
We etsablish relationships between the observed kinetic regimes and the
"thermodynamic" states of the system. The nature of heat conduction in the
proposed model is discussed.Comment: 4 pages, 4 figure
Experimental evidence for the role of cantori as barriers in a quantum system
We investigate the effect of cantori on momentum diffusion in a quantum
system. Ultracold caesium atoms are subjected to a specifically designed
periodically pulsed standing wave. A cantorus separates two chaotic regions of
the classical phase space. Diffusion through the cantorus is classically
predicted. Quantum diffusion is only significant when the classical phase-space
area escaping through the cantorus per period greatly exceeds Planck's
constant. Experimental data and a quantum analysis confirm that the cantori act
as barriers.Comment: 19 pages including 9 figures, Accepted for publication in Physical
Review E in March 199
Equilibrium and dynamical properties of two dimensional self-gravitating systems
A system of N classical particles in a 2D periodic cell interacting via
long-range attractive potential is studied. For low energy density a
collapsed phase is identified, while in the high energy limit the particles are
homogeneously distributed. A phase transition from the collapsed to the
homogeneous state occurs at critical energy U_c. A theoretical analysis within
the canonical ensemble identifies such a transition as first order. But
microcanonical simulations reveal a negative specific heat regime near .
The dynamical behaviour of the system is affected by this transition : below
U_c anomalous diffusion is observed, while for U > U_c the motion of the
particles is almost ballistic. In the collapsed phase, finite -effects act
like a noise source of variance O(1/N), that restores normal diffusion on a
time scale diverging with N. As a consequence, the asymptotic diffusion
coefficient will also diverge algebraically with N and superdiffusion will be
observable at any time in the limit N \to \infty. A Lyapunov analysis reveals
that for U > U_c the maximal exponent \lambda decreases proportionally to
N^{-1/3} and vanishes in the mean-field limit. For sufficiently small energy,
in spite of a clear non ergodicity of the system, a common scaling law \lambda
\propto U^{1/2} is observed for any initial conditions.Comment: 17 pages, Revtex - 15 PS Figs - Subimitted to Physical Review E - Two
column version with included figures : less paper waste
Three-point correlations for quantum star graphs
We compute the three point correlation function for the eigenvalues of the
Laplacian on quantum star graphs in the limit where the number of edges tends
to infinity. This extends a work by Berkolaiko and Keating, where they get the
2-point correlation function and show that it follows neither Poisson, nor
random matrix statistics. It makes use of the trace formula and combinatorial
analysis.Comment: 10 pages, 2 figure
Analysis of chaotic motion and its shape dependence in a generalized piecewise linear map
We analyse the chaotic motion and its shape dependence in a piecewise linear
map using Fujisaka's characteristic function method. The map is a
generalization of the one introduced by R. Artuso. Exact expressions for
diffusion coefficient are obtained giving previously obtained results as
special cases. Fluctuation spectrum relating to probability density function is
obtained in a parametric form. We also give limiting forms of the above
quantities. Dependence of diffusion coefficient and probability density
function on the shape of the map is examined.Comment: 4 pages,4 figure
Two interacting Hofstadter butterflies
The problem of two interacting particles in a quasiperiodic potential is
addressed. Using analytical and numerical methods, we explore the spectral
properties and eigenstates structure from the weak to the strong interaction
case. More precisely, a semiclassical approach based on non commutative
geometry techniques permits to understand the intricate structure of such a
spectrum. An interaction induced localization effect is furthermore emphasized.
We discuss the application of our results on a two-dimensional model of two
particles in a uniform magnetic field with on-site interaction.Comment: revtex, 12 pages, 11 figure
- …