4,412 research outputs found
Novel A-B type oscillations in a 2-D electron gas in inhomogenous magnetic fields
We present results from a quantum and semiclassical theoretical study of the
and resistivities of a high mobility 2-D electron gas
in the presence of a dilute random distribution of tubes with magnetic flux
and radius , for arbitrary values of and . We
report on novel Aharonov-Bohm type oscillations in and ,
related to degenerate quantum flux tube resonances, that satisfy the selection
rule , with an integer. We discuss possible
experimental conditions where these oscillations may be observed.Comment: 11 pages REVTE
Quantum states in a magnetic anti-dot
We study a new system in which electrons in two dimensions are confined by a
non homogeneous magnetic field. The system consists of a heterostructure with
on top of it a superconducting disk. We show that in this system electrons can
be confined into a dot region. This magnetic anti-dot has the interesting
property that the filling of the dot is a discrete function of the magnetic
field. The circulating electron current inside and outside the anti-dot can be
in opposite direction for certain bound states. And those states exhibit a
diamagnetic to paramagnetic transition with increasing magnetic field. The
absorption spectrum consists of many peaks, some of which violate Kohn's
theorem, and which is due to the coupling of the center of mass motion with the
other degrees of freedom.Comment: 6 pages, 12 ps figure
Magnetoresistance of a 2-dimensional electron gas in a random magnetic field
We report magnetoresistance measurements on a two-dimensional electron gas
(2DEG) made from a high mobility GaAs/AlGaAs heterostructure, where the
externally applied magnetic field was expelled from regions of the
semiconductor by means of superconducting lead grains randomly distributed on
the surface of the sample. A theoretical explanation in excellent agreement
with the experiment is given within the framework of the semiclassical
Boltzmann equation.Comment: REVTEX 3.0, 11 pages, 3 Postscript figures appended. The manuscript
can also be obtained from our World Wide Web server:
http://roemer.fys.ku.dk/randmag.ht
Raman Fingerprint of Charged Impurities in Graphene
We report strong variations in the Raman spectra for different single-layer
graphene samples obtained by micromechanical cleavage, which reveals the
presence of excess charges, even in the absence of intentional doping. Doping
concentrations up to ~10^13 cm-2 are estimated from the G peak shift and width,
and the variation of both position and relative intensity of the second order
2D peak. Asymmetric G peaks indicate charge inhomogeneity on the scale of less
than 1 micron.Comment: 3 pages, 5 figure
Mesoscopic Superconducting Disc with Short-Range Columnar Defects
Short-range columnar defects essentially influence the magnetic properties of
a mesoscopic superconducting disc.They help the penetration of vortices into
the sample, thereby decrease the sample magnetization and reduce the upper
critical field. Even the presence of weak defects split a giant vortex state
(usually appearing in a clean disc in the vicinity of the transition to a
normal state) into a number of vortices with smaller topological charges. In a
disc with a sufficient number of strong enough defects vortices are always
placed onto defects. The presence of defects lead to the appearance of
additional magnetization jumps related to the redistribution of vortices which
are already present on the defects and not to the penetration of new vortices.Comment: 14 pgs. RevTex, typos and figures corrected. Submitted to Phys. Rev.
The effect of electron dielectric response on the quantum capacitance of graphene in a strong magnetic field
The quantum capacitance of graphene can be negative when the graphene is
placed in a strong magnetic field, which is a clear experimental signature of
positional correlations between electrons. Here we show that the quantum
capacitance of graphene is also strongly affected by its dielectric
polarizability, which in a magnetic field is wave vector-dependent. We study
this effect both theoretically and experimentally. We develop a theory and
numerical procedure for accounting for the graphene dielectric response, and we
present measurements of the quantum capacitance of high-quality graphene
capacitors on boron nitride. Theory and experiment are found to be in good
agreement.Comment: 8+ pages, 6 figure
Lifting of the Landau level degeneracy in graphene devices in a tilted magnetic field
We report on transport and capacitance measurements of graphene devices in
magnetic fields up to 30 T. In both techniques, we observe the full splitting
of Landau levels and we employ tilted field experiments to address the origin
of the observed broken symmetry states. In the lowest energy level, the spin
degeneracy is removed at filling factors and we observe an enhanced
energy gap. In the higher levels, the valley degeneracy is removed at odd
filling factors while spin polarized states are formed at even . Although
the observation of odd filling factors in the higher levels points towards the
spontaneous origin of the splitting, we find that the main contribution to the
gap at , and is due to the Zeeman energy.Comment: 5 pages, 4 figure
Hysteresis in mesoscopic superconducting disks: the Bean-Livingston barrier
The magnetization behavior of mesoscopic superconducting disks can show
hysteretic behavior which we explain by using the Ginzburg-Landau (GL) theory
and properly taking into account the de-magnetization effects due to
geometrical form factors. In large disks the Bean-Livingston surface barrier is
responsible for the hysteresis. While in small disks a volume barrier is
responsible for this hysteresis. It is shown that although the sample
magnetization is diamagnetic (negative), the measured magnetization can be
positive at certain fields as observed experimentally, which is a consequence
of the de-magnetization effects and the experimental set up.Comment: Latex file, 4 ps file
Scaling of the quantum-Hall plateau-plateau transition in graphene
The temperature dependence of the magneto-conductivity in graphene shows that
the widths of the longitudinal conductivity peaks, for the N=1 Landau level of
electrons and holes, display a power-law behavior following with a scaling exponent . Similarly the
maximum derivative of the quantum Hall plateau transitions
scales as with a scaling exponent
for both the first and second electron and hole Landau
level. These results confirm the universality of a critical scaling exponent.
In the zeroth Landau level, however, the width and derivative are essentially
temperature independent, which we explain by a temperature independent
intrinsic length that obscures the expected universal scaling behavior of the
zeroth Landau level
- …
