5 research outputs found
A cluster of multidrug-resistant Mycobacterium tuberculosis among patients arriving in Europe from the Horn of Africa: a molecular epidemiological study
SummaryBackground The risk of tuberculosis outbreaks among people fleeing hardship for refuge in Europe is heightened. We describe the cross-border European response to an outbreak of multidrug-resistant tuberculosis among patients from the Horn of Africa and Sudan. Methods On April 29 and May 30, 2016, the Swiss and German National Mycobacterial Reference Laboratories independently triggered an outbreak investigation after four patients were diagnosed with multidrug-resistant tuberculosis. In this molecular epidemiological study, we prospectively defined outbreak cases with 24-locus mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) profiles; phenotypic resistance to isoniazid, rifampicin, ethambutol, pyrazinamide, and capreomycin; and corresponding drug resistance mutations. We whole-genome sequenced all Mycobacterium tuberculosis isolates and clustered them using a threshold of five single nucleotide polymorphisms (SNPs). We collated epidemiological data from host countries from the European Centre for Disease Prevention and Control. Findings Between Feb 12, 2016, and April 19, 2017, 29 patients were diagnosed with multidrug-resistant tuberculosis in seven European countries. All originated from the Horn of Africa or Sudan, with all isolates two SNPs or fewer apart. 22 (76%) patients reported their travel routes, with clear spatiotemporal overlap between routes. We identified a further 29 MIRU-VNTR-linked cases from the Horn of Africa that predated the outbreak, but all were more than five SNPs from the outbreak. However all 58 isolates shared a capreomycin resistance-associated tlyA mutation. Interpretation Our data suggest that source cases are linked to an M tuberculosis clone circulating in northern Somalia or Djibouti and that transmission probably occurred en route before arrival in Europe. We hypothesise that the shared mutation of tlyA is a drug resistance mutation and phylogenetic marker, the first of its kind in M tuberculosis sensu stricto. Funding The Swiss Federal Office of Public Health, the University of Zurich, the Wellcome Trust, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), the Medical Research Council, BELTA-TBnet, the European Union, the German Center for Infection Research, and Leibniz Science Campus Evolutionary Medicine of the Lung (EvoLUNG)
What are the bottlenecks to health data sharing in Switzerland? An interview study
BACKGROUND: While health data sharing for research purposes is strongly supported in principle, it can be challenging to implement in practice. Little is known about the actual bottlenecks to health data sharing in Switzerland.
AIMS OF THE STUDY: This study aimed to assess the obstacles to Swiss health data sharing, including legal, ethical and logistical bottlenecks.
METHODS: We identified 37 key stakeholders in data sharing via the Swiss Personalised Health Network ecosystem, defined as being an expert on sharing sensitive health data for research purposes at a Swiss university hospital (or a Swiss disease cohort) or being a stakeholder in data sharing at a public or private institution that uses such data. We conducted semi-structured interviews, which were transcribed, translated when necessary, and de-identified. The entire research team discussed the transcripts and notes taken during each interview before an inductive coding process occurred.
RESULTS: Eleven semi-structured interviews were conducted (primarily in English) with 17 individuals representing lawyers, data protection officers, ethics committee members, scientists, project managers, bioinformaticians, clinical trials unit members, and biobank stakeholders. Most respondents felt that it was not the actual data transfer that was the bottleneck but rather the processes and systems around it, which were considered time-intensive and confusing. The templates developed by the Swiss Personalised Health Network and the Swiss General Consent process were generally felt to have streamlined processes significantly. However, these logistics and data quality issues remain practical bottlenecks in Swiss health data sharing. Areas of legal uncertainty include privacy laws when sharing data internationally, questions of “who owns the data”, inconsistencies created because the Swiss general consent is perceived as being implemented differently across different institutions, and definitions and operationalisation of anonymisation and pseudo-anonymisation. Many participants desired to create a “culture of data sharing” and to recognise that data sharing is a process with many steps, not an event, that requires sustainability efforts and personnel. Some participants also stressed a desire to move away from data sharing and the current privacy focus towards processes that facilitate data access.
CONCLUSIONS: Facilitating a data access culture in Switzerland may require legal clarifications, further education about the process and resources to support data sharing, and further investment in sustainable infrastructureby funders and institutions
Multiplexed single-cell transcriptional response profiling to define cancer vulnerabilities and therapeutic mechanism of action
Large-scale screens of chemical and genetic vulnerabilities in cancer are typically limited to simple readouts of cell viability. Here, the authors develop a method for profiling post-perturbation transcriptional responses across large pools of cancer cell lines, enabling deep characterization of shared and context-specific responses