2,275 research outputs found

    The enigmatic He-sdB pulsator LS IV-14^\circ116: new insights from the VLT

    Full text link
    The intermediate Helium subdwarf B star LS IV-14^\circ116 is a unique object showing extremely peculiar atmospheric abundances as well as long-period pulsations that cannot be explained in terms of the usual opacity mechanism. One hypothesis invoked was that a strong magnetic field may be responsible. We discredit this possibility on the basis of FORS2 spectro-polarimetry, which allows us to rule out a mean longitudinal magnetic field down to 300 G. Using the same data, we derive the atmospheric parameters for LS IV-14^\circ116 to be TeffT_{\rm eff} = 35,150±\pm111 K, logg\log{g} = 5.88±\pm0.02 and logN(He)/N(H)\log{N(\rm He)/N(\rm H)} = -0.62±\pm0.01. The high surface gravity in particular is at odds with the theory that LS IV-14^\circ116 has not yet settled onto the Helium Main Sequence, and that the pulsations are excited by an ϵ\epsilon mechanism acting on the Helium-burning shells present after the main Helium flash. Archival UVES spectroscopy reveals LS IV-14^\circ116 to have a radial velocity of 149.1±\pm2.1 km/s. Running a full kinematic analysis, we find that it is on a retrograde orbit around the Galactic centre, with a Galactic radial velocity component UU=13.23±\pm8.28 km/s and a Galactic rotational velocity component VV=-55.56±\pm22.13 km/s. This implies that LS IV-14^\circ116 belongs to the halo population, an intriguing discovery.Comment: accepted for publication in A&

    Population of hot subdwarf stars studied with Gaia III. Catalogue of known hot subdwarf stars: Data Release 2

    Full text link
    In light of substantial new discoveries of hot subdwarfs by ongoing spectroscopic surveys and the availability of new all-sky data from ground-based photometric surveys and the Gaia mission Data Release 2, we compiled an updated catalogue of the known hot subdwarf stars. The catalogue contains 5874 unique sources including 528 previously unknown hot subdwarfs and provides multi-band photometry, astrometry from Gaia, and classifications based on spectroscopy and colours. This new catalogue provides atmospheric parameters of 2187 stars and radial velocities of 2790 stars from the literature. Using colour, absolute magnitude, and reduced proper motion criteria, we identified 268 previously misclassified objects, most of which are less luminous white dwarfs or more luminous blue horizontal branch and main-sequence stars.Comment: 8 pages, A&A accepte

    Binary sdB Stars with Massive Compact Companions

    Get PDF
    Original paper can be found at: http://astrosociety.org/pubs/cs/381.html Copyright ASPThe masses of compact objects like white dwarfs, neutron stars and black holes are fundamental to astrophysics, but very difficult to measure. We present the results of an analysis of subluminous B (sdB) stars in close binary systems with unseen compact companions to derive their masses and clarify their nature. Radial velocity curves were obtained from time resolved spectroscopy. The atmospheric parameters were determined in a quantitative spectral analysis. Based on high resolution spectra we were able to measure the projected rotational velocity of the stars with high accuracy. In the distribution of projected rotational velocities signs of tidal locking with the companions are visible. By detecting ellipsoidal variations in the lightcurve of an sdB binary we were able to show that subdwarf binaries with orbital periods up to 0.6 d are most likely synchronized. In this case, the inclination angles and companion masses of the binaries can be tightly constrained. Five invisible companions have masses that are compatible with that of normal white dwarfs or late type main sequence stars. However, four sdBs have compact companions massive enough to be heavy white dwarfs (> 1M⊙), neutron stars or even black holes. Such a high fraction of massive compact companions is not expected from current models of binary evolution

    Optical spectroscopy of candidate Alpha Persei white dwarfs

    Full text link
    As part of an investigation into the high mass end of the initial mass-final mass relation we performed a search for new white dwarf members of the nearby (172.4 pc), young (80-90 Myr) α\alpha Persei open star cluster. The photometric and astrometric search using the UKIRT Infrared Deep Sky Survey and SuperCOSMOS sky surveys discovered 14 new white dwarf candidates. We have obtained medium resolution optical spectra of the brightest 11 candidates using the William Herschel Telescope and confirmed that while 7 are DA white dwarfs, 3 are DB white dwarfs and one is an sdOB star, only three have cooling ages within the cluster age, and from their position on the initial mass-final mass relation, it is likely none are cluster members. This result is disappointing, as recent work on the cluster mass function suggests that there should be at least one white dwarf member, even at this young age. It may be that any white dwarf members of α\alpha Per are hidden within binary systems, as is the case in the Hyades cluster, however the lack of high mass stars within the cluster also makes this seem unlikely. One alternative is that a significant level of detection incompleteness in the legacy optical image survey data at this Galactic latitude has caused some white dwarf members to be overlooked. If this is the case, Gaia will find them.Comment: 8 pages, 7 Figures, 3 Tables. Accepted for publication in MNRA

    Frequency and Phase Synchronization in Stochastic Systems

    Full text link
    The phenomenon of frequency and phase synchronization in stochastic systems requires a revision of concepts originally phrased in the context of purely deterministic systems. Various definitions of an instantaneous phase are presented and compared with each other with special attention payed to their robustness with respect to noise. We review the results of an analytic approach describing noise-induced phase synchronization in a thermal two-state system. In this context exact expressions for the mean frequency and the phase diffusivity are obtained that together determine the average length of locking episodes. A recently proposed method to quantify frequency synchronization in noisy potential systems is presented and exemplified by applying it to the periodically driven noisy harmonic oscillator. Since this method is based on a threshold crossing rate pioneered by S.O. Rice the related phase velocity is termed Rice frequency. Finally, we discuss the relation between the phenomenon of stochastic resonance and noise-enhanced phase coherence by applying the developed concepts to the periodically driven bistable Kramers oscillator.Comment: to appear in the Chaos focus issue on "Control, communication, and synchronization in chaotic dynamical systems
    corecore