3 research outputs found

    A biaxial nematic liquid crystal composed of matchbox-symmetric molecules

    Get PDF
    By means of Monte Carlo simulations in the isothermal-isobaric ensemble, we investigate the structure and phase behaviour of a thermotropic liquid crystal composed of matchbox-symmetric (or board-like) molecules. Besides the isotropic phase the liquid crystal exhibits also uniaxial and biaxial nematic phases. The interaction potential is derived through an expansion in terms of Stone's rotational invariants [A. J. Stone, Mol. Phys. 78, 241–256 (1978).] that can be reexpressed in terms of Cartesian tensors. This latter formulation is particularly well suited for computer simulations. We analyse the orientation distribution function which allows us to distinguish between intrinsic and extrinsic biaxiality. In addition, we study the orientation-dependent correlation functions. In the limit of large intermolecular separations, the value of the orientation correlation function corresponds to the uniaxial and biaxial order parameters which are coupled in a complex fashion

    Efficient T cell activation requires an optimal dwell-time of interaction between the TCR and the pMHC complex.

    No full text
    Cytotoxic T cell (CTL) activation by antigen requires the specific detection of peptide-major histocompatibility class I (pMHC) molecules on the target-cell surface by the T cell receptor (TCR). We examined the effect of mutations in the antigen-binding site of a Kb-restricted TCR on T cell activation, antigen binding and dissociation from antigen.These parameters were also examined for variants derived from a Kd-restricted peptide that was recognized by a CTL clone. Using these two independent systems, we show that T cell activation can be impaired by mutations that either decrease or increase the binding half-life of the TCR-pMHC interaction. Our data indicate that efficient T cell activation occurs within an optimal dwell-time range of TCR-pMHC interaction. This restricted dwell-time range is consistent with the exclusion of either extremely low or high affinity T cells from the expanded population during immune responses
    corecore