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ABSTRACT

By means of Monte Carlo simulations in the isothermal-isobaric ensemble we investi-
gate the structure and phase behaviour of a thermotropic liquid crystal composed of
matchbox-symmetric (or board-like) molecules. Besides the isotropic phase the liquid
crystal exhibits also uniaxial and biaxial nematic phases. The interaction potential is
derived through an expansion in terms of Stone’s rotational invariants [A. J. Stone,
Mol. Phys. 78, 241–256, (1978)] that can be reexpressed in terms of Cartesian ten-
sors. This latter formulation is particularly well suited for computer simulations. We
analyse the orientation distribution function which allows us to distinguish between
intrinsic and extrinsic biaxiality. In addition, we study the orientation-dependent
correlation functions. In the limit of large intermolecular separations the value of
the orientation correlation function corresponds to the uniaxial and biaxial order
parameters which are coupled in a complex fashion.
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1. Introduction

Liquid crystals are a fascinating class of soft-matter systems capable of forming a host
of ordered phases [1]. They consist of organic molecules (i.e., mesogens) where shape
and flexibility of the molecular skeleton in conjunction with favourable thermodynamic
conditions promote the formation of these ordered phases. The simplest one is the so-
called nematic phase in which the distribution of the centres-of-mass of the mesogens
is always isotropic. Yet, the mesogens align to a certain extent with a distinguished
direction, the so-called nematic director n̂. The nematic phase obviously has uniaxial
symmetry in this case. However, this is not necessarily always so.

For example, in 1970 Freiser [2] and a little later Alben [3] hypothesised that it
might be possible for nematic phases to exhibit biaxial instead of uniaxial symmetry.
This conjecture rests upon a mean-field approach in both cases. In order for a nematic
phase to exhibit biaxial symmetry, a second symmetry axis besides n̂ needs to exist.
In the realm of modern display technology, biaxial nematic liquid-crystalline materials
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are very interesting because of their short response times to applied external fields [4].
Usually, one distinguishes between intrinsic and extrinsic biaxiality [5]. Biaxiality is

intrinsic if the mesogens themselves possess two symmetry axes. On the contrary, biax-
iality is extrinsic if uniaxially symmetric mesogens are manipulated by external agents
so that the system as a whole can exhibit a second symmetry axis under favourable
conditions [6]. The external agent could be a second uniaxial compound in a binary
mixture where the mesogens pertaining to different components prefer a T-shaped ar-
rangement [7]. The same philosophy has been chosen in the work by Cuetos et al.
[8]. However, unlike Ref. [7], where orientation-dependent Lennard-Jones-type of po-
tentials were employed, Cuetos et al. base their study on (discontinuous) square-well
interactions.

The first experimental realisation of a (lyotropic) biaxial nematic liquid crystal was
reported by Yu and Saupe [9]. They studied a ternary mixture of potassium-laureate-
1-decanol and water. Another lyotropic liquid crystal that exhibits biaxial nematic
phases is a ternary mixture of soap, detergent, and water studied by Oliveira et al. [10].
Lyotropic liquid crystals exhibiting extrinsic biaxiality have been studied by Stroobants
and Lekkerkerker [11] who investigated a mixture of rod- and platelet-like mesogens
within the framework of Onsager’s theory. Using again Onsager’s theory, Wensink et
al. [12] report a first-order phase transition during which a stable biaxial nematic forms
in a lyotropic liquid crystal.

As far as nematic phases with intrinsic biaxiality are concerned quite a bit of progress
has been made because of advances in chemical synthesis. There are essentially two
main molecular geometries that have been studied, namely bent-core [13, 14] and board-
or matchbox-symmetric mesogens [15, 16]. Both molecular architectures differ in the
number of reflection planes. Whereas there are two such planes for bent-core structures,
matchbox-shaped mesogens possess three of those. Slightly more extravagant architec-
tures are those of organosiloxane tetrapodes [17] where matchbox-shaped central units
are connected to a silicon atom. Because of this structure even biaxial short-range or-
der could be detected by means of deuterium nuclear magnetic resonance (NMR). In
a few cases even biaxial smectic phases have been reported [18, 19].

On the theoretical side quite a bit of work has already been devoted to biaxial ne-
matic phases in liquid crystals. Tjipto-Margo and Evans [20] employed Onsager’s theory
to investigate the formation of uniaxial nematic phases in a liquid crystal composed of
biaxial mesogens. At its core, Onsager’s theory requires a calculation of the excluded
volume of hard bodies. This problem has been investigated in depth by Mulder [21].

By means of computer simulations Allen [22] and later Camp and Allen [23] inves-
tigated the phase behaviour of intrinsically biaxial mesogens with only hard repulsive
interactions. They proposed a set of order parameters also calculated in this work.
These order parameters are the same as those employed also in the work by Mulder
[21] and Straley [24].

Berardi et al. [25, 26] use a properly modified Gay-Berne potential in their sim-
ulations of a liquid crystal with intrinsic biaxiality. In a lattice Monte Carlo (MC)
study Biscarini et al. [27] used an orientation dependence of the interaction poten-
tial based upon symmetry-adapted Wigner rotation matrices. Their model reduces to
the Lebwohl-Lasher model in the limit of vanishing biaxiality. Results from mean-field
theory are in good qualitative agreement with their MC data.

Recently, Cuetos et a. [28] employed MC simulations of board-like particles. These
particles interact through purely entropic forces. The authors focus on the impact of the
variation of the width-to-length ratio while keeping the thickness of the mesogens fixed.
They found a rich phase behaviour including biaxial columnar and smectic phases. They
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also use Onsager’s theory to predict the uniaxial-biaxial nematic phase transition.
A lattice model invoking an expansion of the interaction potential based upon rota-

tional invariants [29] has been proposed by Luckhurst and Romano [30]. Their model
potential was used later by Longa and Pająk [31] who employed the Ginzburg-Landau
phenomenological theory to study the phase behaviour of mesogens with intrinsic bi-
axiality.

A model for matchbox-symmetric mesogens was used within a density functional ap-
proach by Longa et al. [32]. The impressive richness of the phase diagram of matchbox-
symmetric hard mesogens was demonstrated by Martínez-Ratón [33]. Their study is
based upon fundamental measure theory for the contribution of the hard-repulsive
interactions to the excess free energy.

In this work we utilise an off-lattice model for a liquid crystal with intrinsic biax-
iality. The molecular architecture assumes matchbox-symmetric mesogens. To obtain
an expression for the orientation dependence of the anisotropic interactions we fol-
low Luckhurst and Romano [30] and expand the interaction potential in terms of the
rotational invariants proposed by Stone [34].

Based upon symmetry considerations [21, 34] and utilising a ladder-operator for-
malism [29] borrowed from angular-momentum theory in quantum mechanics [35], we
can derive an expression for the anisotropic interaction potential in terms of a full
contraction of Cartesian second-rank tensors. Thus, our potential is equivalent to the
one used in the mean-field calculations of Straley [24] and of Sonnet et al. [5] (see also
Ref. 36). We focus on uniaxial and biaxial order parameters [22, 23], the orientation
distribution function (odf), and the orientation correlation function.

The odf reflects the symmetry of the mesogens in our model. In addition, we show
that at large separations between the mesogens the orientation correlations can be
expressed in terms of the uniaxial and biaxial order parameters with a subtle coupling
between the two. Such a coupling obviously does not occur in uniaxial nematic phases
where much simpler expressions are obtained [37]. Neither the odf nor the orientation
correlation function have been considered in earlier work for similar systems. Both
quantities turn out to provide a lot of insight into phase changes in this model.

The remainder of the manuscript is organised as follows. Our model is introduced
in Section 2. Important mathematical details of the derivation of the anisotropic con-
tribution to the interaction potential are deferred to Appendix A. We give details of
the mathematical manipulations here because they are difficult to extract from the
existing literature. In Section 3 we introduce key quantities that we intend to analyse
in the subsequent Section 4. The paper concludes in Section 5 where we put our re-
sults into perspective. Details of the analysis of the asymptotic decay of the orientation
correlation functions are given in Appendix B.

2. Model

We consider a liquid crystal composed of N mesogens. The interaction between meso-
gens 1 and 2, whose centres of mass are located at r1 and r2, is assumed to be pairwise
additive. We decompose the interaction potential u into an isotropic part uiso and into
an anisotropic contribution uaniso according to

u(r12,Ω1,Ω2) = uiso(r12) + uaniso(r12,Ω1,Ω2), (1)
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where r12 = |r12| = |r1 − r2| is the distance between the centres of mass. In Equa-
tion (1), Ω1,2 are Euler angles. We adopt the convention of Gray and Gubbins [38]
for the order in which the rotations about specific axes are being carried out (see Sec-
tion A.2 of Ref 38). Therefore, Ω = (φθχ) where φ and θ refer to the azimuthal and
polar angle, respectively.

For uiso we adopt the soft-sphere potential which permits us to express uiso as

uiso(r12) = 4ε

(
σ

r12

)12

, (2)

where, for the time being, ε and σ are just two parameters that will be given a lucid
interpretation shortly. To derive an expression for uaniso we follow Stone [34] who
noted that for molecules of arbitrary shape an expansion of uaniso in a complete set of
rotational invariants according to

uaniso (r12,Ω1,Ω2) =
∑

l1l2l

∑

n1n2

un1n2

l1l2l
(r12)

×Sn1n2

l1l2l
(Ω1Ω2,Ω12) , (3)

is generally feasible. In Equation (3), {un1n2

l1l2l
} is a set of expansion coefficients that

depend only on r12, and Ω12 = (φ12θ120) describes the orientation of r̂12 = r12/r12
in the space-fixed reference frame where r̂12 is pointing from the centre of mass of
mesogen 1 to that of mesogen 2. Here and below we use the caret to indicate a unit
vector. The quantity l′ (that is l1, l2, or l) is a non-negative integer (zero included)
and m′ and n′ are related to l′ through the relation m′, n′ ∈ [−l′, l′].

ui

vi wi

v
wu

h

Figure 1. Cartoon of a matchbox-symmetric mesogen for which the major symmetry axis ûi and the minor
symmetry axis v̂i are given in Equations (11a) and (11b), respectively; the direction of the second minor
symmetry axis is obtained from ŵi = ûi × v̂i. The mesogen contains reflection planes σh and σwu

v in the
notation of Stone (see Table 2 of Ref. 34). Both reflection planes contain the vector ŵi. A third reflection plane
σvu
v , orthogonal to σh and σwu

v , is not shown.
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Table 1. Val-
ues of l, n1, and
n2 to be con-
sidered in Equa-
tion (6).

l n1 n2

0 0 0
2 0 0

±2 0
0 ±2
±2 ±2

Moreover, in Equation (3) we introduce the scalar function [34]

Sn1n2

l1l2l
(Ω1,Ω2,Ω12) = il1−l2−l

∑

m1m2m

(
l1 l2 l
m1 m2 m

)

×D l1
m1n1

∗
(Ω1)D l2

m2n2

∗
(Ω2)D l

m0
∗
(Ω12), (4)

where i ≡
√
−1, (· · · ) is a Wigner 3j symbol,

D l
mn(Ω) = e−imφd l

mn (θ) e
−inχ (5)

is a Wigner rotation matrix, and the asterisk denotes the complex conjugate [35, 38, 39].
The real matrix d l

mn depends only on the Euler angle θ; for l ≤ 2 it is given by
Equations (A.114) and (A.115) of the book by Gray and Gubbins [38]. The asymmetric
phase factor in front of the summation signs serves to make Sn1n2

l1l2l
real for n1 = n2 = 0

regardless of l1, l2, and l [34].
We now specialise the above treatment to matchbox-symmetric particles illustrated

by the cartoon presented in Figure 1. Each mesogen possesses three symmetry axes:
the major one labelled ûi and two minor ones that we refer to as v̂i and ŵi. These
three axes are obviously pairwise orthogonal to one another. Because of the matchbox
symmetry, each mesogen contains three reflection planes. Two of these labelled σh and
σwu
v in Figure 1 contain the minor symmetry axis ŵi. According to Figure 1, ûi is a

C2 rotation axis (and so are v̂i and ŵi). Therefore, the matchbox-symmetric mesogens
pertain to the point group D2h.

The existence of these symmetry elements has consequences for the expansion coeffi-
cients in Equation (3). From Figure 1 one readily sees that each mesogen is centrosym-
metric. According to Stone [34], l in Equation (4) must therefore be even. Moreover,
the existence of the reflection plane σh (see Figure 1) then requires n1 and n2 to be
even as well [34].

In addition, we assume uaniso to depend only on r12. This implies that in Equa-
tion (4), l = m = 0. Because of this assumption, the 3j symbol in Equation (42) is
nonzero only for l1 = l2 and m1 = −m2. This follows from the two selection rules

• |l1 − l2| ≤ l ≤ l1 + l2 (triangle inequality) and
• m1 +m2 = m

which need to be satisfied simultaneously. On account of these considerations the triple
sum in Equation (4) collapses to a single one; the same is true for the triple sum in
Equation (3).

However, the sum on m in Equation (4) involves 2l+1 summands and thus becomes
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overwhelmingly large rather quickly as l increases. Hence, we restrict the discussion to
l ≤ 2 from now on and rewrite Equation (3) as

uaniso (r12,Ω1,Ω2) =
2∑

l=0

∑

n1n2

un1n2

ll0 (r12)Sn1n2

ll0 (Ω1,Ω2,Ω12) (6)

keeping the argument Ω12 of the
{
Sn1n2

ll0

}
only formally. Hence, in principle we need to

consider in Equation (6) the terms corresponding to the entries in Table 1. However,
the ten terms listed in Table 1 can be reduced by additional symmetry considerations
[21, 30] as we explain in the following.

We begin with the simplest case l = n1 = n2 = 0. Because S00
000 = 1, the leading

term in the expansion in Equation (6) is u00000. However, we cannot take recourse to any
additional first-principles argument to determine what this expansion coefficient should
be. We therefore assume that our mesogens interact via dispersion forces. Under this
premise, Gray and Gubbins [38] pointed out that u00000 ∝ r−6

12 . The coefficient of pro-
portionality has dimensions of energy× (length)−6 [see, for example, Equation (2.226)
of Ref. 38]. This prompts us to introduce

u00000(r12) = −4ε

(
σ

r12

)6

. (7)

Moreover, from Equation (2.234) of Ref. 38 it is clear that all the other expansion
coefficients of uaniso should have the same distance dependence as long as we restrict
the discussion to non-polarisable mesogens interacting via dispersion forces only.

Next, we consider l = 2 but n1 = n2 = 0. As we shall demonstrate in Appendix A
this contribution refers to a coupling between purely uniaxial degrees of freedom which
we shall keep. The next two cases, namely l = 2, n1 = ±2 and n2 = 0 as well as
n1 = 0 and n2 = ±2 are disregarded because they would entail a coupling between
uniaxial and biaxial degrees of freedom as we shall demonstrate also in Appendix A.
We deliberately omit such coupling in the present work.

Finally, we include the cases l = 2, n1 = ±2, n2 = ±2. The notation indicates
that all four combinations of negative and positive values of n1 and n2 have to be
considered. The corresponding terms in our expression for uaniso can be simplified by
additional symmetry considerations. For example, according to Table 2 in the paper
by Stone [29],

u22220 (r12) = u22220 (r12) (8a)

u22220 (r12) = u22220 (r12) , (8b)

where we used the shorthand notation x = −x. The separate equalities given in Equa-
tions (8a) and (8b) follow from the existence of the reflection plane σwu

v (see Figure 1)
[21, 30]. Reminding ourselves that the mesogens are identical, the expansion coefficients
in Equation (6) satisfy one last equality namely u22220 = u22220 from which it follows that
all four expansion coefficients in the Equations (8) are equal. Because of these addi-
tional symmetry considerations the number of entries listed in Table 1 is finally reduced
to only 5. Thus, for the case n1 = ±2, n2 = ±2 the expansion coefficients in Equa-
tion (6) are all the same. This allows us to combine the associated rotational invariants
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and introduce

S±2±2
220 = S22

220 + S22
220 + S22

220 + S22
220. (9)

Rather than expressing uaniso in terms of rotational invariants {Sn1n2

220 } it will turn out
to be more useful to express the anisotropic interaction potential in terms of suitably
defined Cartesian tensors. Let us now introduce the traceless1, second-rank tensors

U (Ωi) ≡ Ui = û (Ωi) û (Ωi)−
1

3
1 (10a)

B (Ωi) ≡ Bi = v̂ (Ωi) v̂ (Ωi)− ŵ (Ωi) ŵ (Ωi) , i = 1, 2, (10b)

where 1 is the unit tensor and

û (Ωi) ≡ ûi =




sin θi cosφi

sin θi sinφi

cos θi



 (11a)

v̂ (Ωi) ≡ v̂i =




cosφi cos θi cosχi − sinφi sinχi

sinφi cos θi cosχi + cosφi sinχi

− sin θi cosχi



 (11b)

represent the orientation of the molecular major and minor symmetry axes in a space-
fixed coordinate system. The tensors U and B are referred to as the uniaxial and biaxial
tensors, respectively. The terms involving products of û, v̂, and ŵ on the right-hand
sides of Equations (10a) and (10b) are to by understood as dyads.

The third vector is defined through the expression ŵi = ûi×v̂i. Using the expressions
in Equations (2) and (6)–(10) we can eventually cast u in Equation (1) as

u (r12,Ω1,Ω2) = uLJ (r12)− 4ε

(
σ

r12

)6

Ψ (Ω12) , (12)

where

uLJ = 4ε

[(
σ

r12

)12

−
(

σ

r12

)6
]

(13)

is the well-known Lennard-Jones potential,

Ψ (Ω12) = ε′U1 : U2 + ε′′B1 : B2 (14)

is the anisotropy function, and X : X = XαβXβα (X = U or B) denotes the full
contraction of two second-rank tensors using the Einstein repeated summation-index
convention.

At this point we emphasise that the expressions given in Equations (12)–(14) do by
no means allow for modeling mesogens that have the shape of matchboxes. Rather the
interaction potential possesses certain symmetry elements such as n-fold rotation axes
and reflection planes that would be characteristic of a real matchbox. Therefore, we
refer to our mesogens as “matchbox-symmetric”.

1For particularly important properties of traceless matrices, see Ref. [40].
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In Appendix A we link the rotational invariants introduced in Equation (4) to the
Cartesian tensors U and B in Equations (10a) and (10b), respectively. This is accom-
plished with the ladder-operator technique proposed by Stone [34]. It is identical to
the one arising in angular-momentum theory in quantum mechanics [35].

The philosophy of just equipping the interaction potential with certain symmetry
elements is not at all new. In fact, it has been employed in the original work by
Maier and Saupe [41] in which the orientation dependence of the interaction between
uniaxial mesogens is accounted for by the second Legendre polynomial. As pointed out
by Schoen et al. [42], for any fixed relative orientation of a pair of mesogens, Maier
and Saupe’s interaction potential will be isotropic. Nonetheless, properties of uniaxial
nematic phases have been successfully reproduced by this minimalistic approach.

Finally, we are in a position to attach physical meaning to the parameters ε and σ
introduced in Equation (2) through the relations uLJ (σ) = 0 and duLJ/dr12|r12=σ =
0. Thus, σ is a measure of the diameter of the spherically symmetric core of our
mesogens and ε is the depth of the attractive well. In Equation (14), ε′ and ε′′ are
dimensionless coupling constants referring to the strength of the coupling of uniaxial
and biaxial degrees of freedom, respectively. In these parameters we lump together
all trivial numerical pre-factors arising from the expansion of uaniso in terms of the
rotational invariants

{
Sn1n2

l1l2l

}
and other molecular constants such as polarizabilities

[38].
Throughout this work we fix ε′ = 0.375. This value was chosen according to the

following criteria. On the one hand, ε′ must not be too large to avoid glassy states
before biaxial nematic phases can even form. On the other hand, ε′ must not be too
small so that stable uniaxial and biaxial nematic phases occur for moderate values of T
and ρ. In practice, we performed short test runs to fine-tune this parameter according
to both criteria.

3. Orientational structure and order parameters

3.1. Orientation-dependent correlation functions

3.1.1. Expansion coefficients

To gain deeper insight into the nature of uniaxial and biaxial nematic order we intro-
duce the orientation-dependent pair correlation function. As our point of departure we
choose the two-particle generic distribution function [38] defined as

ρ (r1, r2,Ω1,Ω2) = ρ (r1,Ω1) ρ (r2,Ω2) g (r1, r2,Ω1,Ω2) , (15)

where g is the orientation-dependent pair correlation function and ρ on the right hand-
side denote the generic single-particle distribution functions. Assuming our system to
be homogeneous we can rewrite the latter function as

ρ (r,Ω) = ρα (Ω) , (16)

where ρ on the right-hand side is the (mean) number density and α is the odf. The
odf is normalised according to

∫
dΩα = 1. Because homogeneity implies translational
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invariance we can rewrite Equation (15) as

1

ρ2
ρ (r12,Ω1,Ω2) = α (Ω1)α (Ω2) g (r12,Ω1,Ω2)

= g′ (r12,Ω1,Ω2) , (17)

where g′ is a “reduced” distribution function [37]. It is introduced because in the absence
of positional and orientational correlations g

r12→∞−→ 1 and therefore g′ can simply be
cast as the product of the two odf’s [37].

Similar to Equation (3) we can expand g′ in terms of rotational invariants via

g′ (r12,Ω1,Ω2) =
∑

l1l2l

∑

n1n2

gn1n2

l1l2l
(r12)Sn1n2

l1l2l
(Ω1,Ω2,Ω12) , (18)

where {gn1n2

l1l2l
} is a set of expansion coefficients. We immediately restrict the discussion

to the case in which g depends only on r12. This implies that l = m = 0. Employing
the two selection rules for nonzero 3j symbols introduced in Section 2 we can replace
the 3j symbol by [see Equation (4)]

(
l l 0
m m 0

)
=

(−)l+m

√
2l + 1

. (19)

Using Equation (4) we can rewrite Equation (18) more explicitly as

g′ (r12,Ω1,Ω2) =
∑

l

1√
2l + 1

(
2l + 1

8π2

)2 ∑

n1n2

gn1n2

ll0 (r12)

×
∑

m

(−)mD l
mn1

∗
(Ω1)D l

mn2

∗
(Ω2), (20)

where (−)m = (−1)m.

The extra factor of
(
2l+1
8π2

)2
in Equation (20) has been introduced to make sure

that the final expression for gn1n2

ll0 is compatible with the Cartesian tensor formulation
developed in Appendix A. The latter does not take recourse to the orthogonality of
the Wigner rotation matrices and thus lacks factors of this sort.

Multiplying both sides of Equation (20) by

∑

m

(−)mD l
mn1

(Ω1)D l
mn2

(Ω2),

integrating over dΩ1dΩ2, and employing the orthogonality of the Wigner rotation ma-
trices

∫
dΩD l

mn
∗
(Ω)D l′

m′n′(Ω) =
8π2

2l′ + 1
δl′lδm′mδn′n, (21)

where the δij’s are Kronecker symbols.
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After rearranging terms we then obtain the relation

√
2l + 1gn1n2

ll0 (r12) =

∫∫
dΩ1dΩ2 g

′ (r12,Ω1,Ω2)

×
∑

m

(−)mD l
mn1

(Ω1)D l
mn2

(Ω2). (22)

Using Equation (4) it is easy to verify that our final expression for the expansion
coefficients gn1n2

ll0 can be cast as

gn1n2

ll0 (r12) =

∫∫
dΩ1dΩ2 g

′ (r12,Ω1,Ω2)Sn1n2

ll0
∗. (23)

3.1.2. Computer simulations

Following Zannoni [37, 43], we can rewrite Equation (23) to make it suitable for an
evaluation in computer simulations. To that end we divide and multiply by

g′0 (r12) =

∫∫
dΩ1dΩ2 g

′ (r12,Ω1,Ω2) (24)

which permits us to recast Equation (23) as [42, 44]

gn1n2

ll0 (r12) = g′0 (r12)
〈
Sn1n2

ll0
∗〉

shell
, (25)

where 〈. . .〉shell ≡ g′0
−1 ∫∫ dΩ1dΩ2 g′ . . . and we dropped the arguments of Sn1n2

ll0 to
simplify the notation.

Notice that on account of the definition of g′ in Equation (17), g′0 is not the normal
radial distribution function. For one, g′ still involves the product of the two odf’s
and second, the expression in Equation (24) is not defined as an unweighted average
over orientations of g introduced in Equation (15). Therefore, g′0 is unknown at this
stage because the odf’s are undetermined. However, in practice this is not a problem
because orientation correlations are fully accounted for by

〈
Sn1n2

ll0

〉
shell

. Thus, if the

focus is exclusively on orientational correlations we can consider
〈
Sn1n2

ll0

〉
shell

rather
than the expansion coefficient gn1n2

ll0 associated with it.
We can now invoke the same symmetry considerations already applied to {un1n2

ll0 } in
Section 2. Leaving out the case l = n1 = n2 = 0 for obvious reasons, only l = 2 and
n1 = n2 = 0 and n1 = ±2 and n2 = ±2 will be considered (see Table 1); the other two
cases, namely n1 = ±2, n2 = 0 as well as n1 = 0 and n2 = ±2 are disregarded because
Ψ in Equation (14) does not contain a term corresponding to coupling between uniaxial
and biaxial degrees of freedom [see also Equations (A13) and (A14)]. Therefore, we only
consider [see Appendix A]

√
5
〈
S00
220 (Ω1,Ω2,Ω12)

〉
shell

=
3

2
〈U1 : U2〉shell (26a)

√
5
〈
S±2±2
220 (Ω1,Ω2,Ω12)

〉
shell

= 〈B1 : B2〉shell , (26b)

where the tensors U and B have been defined in Equations (10a) and (10b), respec-
tively.
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A couple of comments apply at this point. For n1 = n2 = 0, S00
ll0 is real and therefore

S00
ll0

∗
= S00

ll0 so that Equation (26a) follows from the general expression given in Equa-
tion (23) without further ado. Using the symmetry property of the Wigner rotation
matrices

D l
mn(Ω) = (−)m+nD l

mn
∗
(Ω) (27)

it follows that

∑

m

(−)mD l
mn1

(Ω1)D l
mn2

(Ω2)

=
∑

m

(−)mD l
mn

1

∗
(Ω1)D l

mn
2

∗
(Ω2)

=
∑

m

(−)mD l
mn

1

∗
(Ω1)D l

mn
2

∗
(Ω2), (28)

where we omitted a factor (−)2m+n1+n2 because n1 and n2 are supposed to be even
integers. Thus, it is clear that Sn1n2

ll0
∗ = Sn

1
n

2

ll0 and therefore S±2±2
220

∗
= S±2±2

220 using
Equation (9).

Utilising Equations (26) has the additional advantage that in a computer simulation
it is rather straightforward to compute 〈Sn1n2

220 〉shell. Notice that the expressions in
Equations (26a) and (26b) clearly indicate that only the relative orientations between
mesogens 1 and 2 matter. As explained by Zannoni [43] one could therefore compute
〈Sn1n2

220 〉shell as a histogram. According to the distance r12 a histogram bin is chosen
and the tensors U and B are computed for both mesogens of the pair. These tensors
are then fully contracted and the resulting values are sorted into the bin corresponding
to r12. The procedure is repeated for each pair of mesogens in the given configuration.
Obviously, this procedure has to be repeated for as many configurations as it may take
to compute the histogram with an acceptable statistical accuracy. In closing we note
that a procedure very similar to the one described has been employed by Streett and
Tildesley [44] and later by Schoen et al. [42].

3.1.3. The limit of large intermolecular separations

It is instructive to investigate the expressions given in Equations (26a) and (26b) in
the limit r12 → ∞. In this limit, we can rewrite Equation (24) as

lim
r12→∞

g′0 (r12) =

∫∫
dΩ1dΩ2 α (Ω1)α (Ω2) = 1, (29)

where we also used Equation (17). The previous result follows because the odf’s are
normalised and because we assumed that limr12→∞ g = 1 [37]. This hypothesis is
certainly valid in an isotropic phase; in an ordered phase, however, the assumption can
only be justified a posteriori. This is because limr12→∞ g = 1 neglects all (spatial and
orientational) correlations between mesogens 1 and 2 which is difficult to justify at the
outset.

However, accepting the above approximation as a working hypothesis for the time

11



being we use Equation (23) and introduce

lim
r12→∞

gn1n2

220 (r12) = 〈Sn1n2

220 〉∞

=

∫∫
dΩ1dΩ2 α (Ω1)α (Ω2)Sn1n2

220
∗

=
1√
5

∫∫
dΩ1dΩ2 α (Ω1)α (Ω2)

×
∑

m

(−)mD 2
mn1

(Ω1)D 2
mn2

(Ω2). (30)

We dropped the word “shell” as an index because in the limit r12 → ∞ the shell loses
its meaning. In fact, gn1n2

220 will assume a constant value irrespective of how one defines
a shell.

We now follow Mulder [21] and expand the odf according to

α (Ω) =
∑

l′m′n′

αl′
m′n′Ql′

m′n′ (Ω)

=
∑

lmn

αl
|m||n|s|m||n|D l

mn(Ω), (31)

where m′, n′ ∈ [0, l]; instead, n and m are defined as usual (see Section 2). In addition,
the symmetry of the odf requires l, m, and n to be even. The functions

{
Ql

m′n′

}
are

defined in Equation (3.5) of the paper by Mulder [21]. The coefficient

smn =

(
1√
2

)2+δm0+δn0

2δm0+δn0 = 2(δm0+δn0−2)/2 (32)

serves to make the expression on the second line of Equation (31) consistent with
Mulder’s Equations (3.5) and (3.6). The coefficients

{
αl
mn

}
are expansion coefficients

[21–24, 37, 43]. The expansion coefficients should not be confused with order parameters
because the latter are defined on the interval [0, 1] whereas this is not necessarily true
for the former,

We now insert Equations (31) and (32) into Equation (30) and obtain eventually
[cf., Equations (26)]

√
5
〈
S00
220

〉
∞

=
3

2
〈U1 : U2〉∞ =

(
α2
00

)2
+
(
α2
20

)2
(33a)

√
5
〈
S±2±2
220

〉
∞

= 〈B1 : B2〉∞ = 2
[(
α2
22

〉2
+
〈
α2
02

)2]
, (33b)

where we dropped all arguments to simplify the notation. Details of this derivation
have been deferred to Appendix B. Our analysis also enables us to evaluate

〈
S±20
220

〉
∞

and
〈
S0±2
220

〉
∞

where a definition analogous to the one for S±2±2
220 in Equation (9) is

used. Based upon Equations (A13) and (A14) we find that

√
5
〈
S±20
220

〉
∞

=

√
3

2
〈U1 : B2〉∞ =

√
3

2
〈B1 : U2〉∞

=
√
2
[
α2
00α

2
02 + α2

22α
2
20

]
. (34)
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Together the expressions in Equations (33) and (34) reflect the coupling between uniax-
ial and biaxial degrees of freedom. However, from the definition of Ψ in Equation (14)
it is clear that we deliberately disregard such coupling. According to one’s physical
intuition one would therefore expect B1 : U2 = U1 : B2 = 0 even in uniaxial or bi-
axial nematic phases. If this is indeed so α2

20 = α2
02 = 0 and therefore we obtain from

Equations (33) our final result

√
5
〈
S00
220

〉
∞

= S2 (35a)
√
5
〈
S±2±2
220

〉
∞

= 2η2, (35b)

where the nematic and biaxial order parameters S and η will be defined below in
Equations (42) and (50). Equations (35) are derived by comparing Equation (3.9) in
Mulder’s paper with our Equations (42) and (50) and by noticing that our expansion
coefficients

{
αl
mn

}
have to be identical to Mulder’s expansion coefficients

{
qlmn

}
[21].

We defer a study of the effects of including the coupling between uniaxial and biaxial
degrees of freedom to a separate publication.

3.2. Rotations of the eigensystems

Another quantity of interest to us is the odf. In computer simulations the odf can
be computed as a two-dimensional histogram of the angles θi and φi describing the
orientation ûi of mesogen i [see Equation (11a)]. Hence, the tips of the vectors {ûi}
correspond to points on S2 (i.e., the surface of the unit sphere). To compute the odf,
S2 is partitioned into small bins of size δA = δφ × δθ. One then simply counts the
number of mesogens whose orientation pertains to a specific bin. Clearly, the size of
the bins is largest along the equator of S2 and becomes progressively smaller towards
its poles if the number of bins stays fixed.

Suppose now the liquid crystal is in a uniaxial nematic phase. Then the vectors {ûi}
are predominantly aligned with n̂ where the tip of n̂ can be represented by a point
on S2 as well. In the absence of external fields, this point can lie anywhere on S2. In
particular, it can be located near the poles. This implies that most of the {ûi} also
correspond to points in that region of S2. Thus, if the histogram is computed, the odf
would only be accessible with rather low resolution, or, if the resolution is enhanced
by making δA smaller, with insufficient statistical accuracy.

It is therefore advantageous to rotate the vectors {ûi} (or, alternatively, the basis
used to define S2) such that the orientations of the mesogens are sorted into bins
located at or near the equator of S2. We can determine a basis optimised according to
the above criteria following the protocol originally proposed by Camp and Allen [23]
to define suitable order parameters.

Let us introduce three instantaneous, second-rank, symmetric, and traceless tensors

Qxx =
1

2N

N∑

i=1

(3x̂ix̂i − 1) , (36)

where x̂i represents ûi, v̂i, or ŵi. The three tensors Qxx satisfy the eigenvalue equation

Qxx q̂
x
±,0 = λx

±,0 q̂
x
±,0, (37)

where λx
− ≤ λx

0 < λx
+ are the three eigenvalues and q̂ x

±,0 are the associated eigenvectors
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where the equal sign applies if the nematic phase is uniaxial. Equation (37) gives us
a total of nine eigenvalues and associated -vectors. It has been pointed out by Mulder
[21] that on account of symmetry arguments the three tensors Quu, Qvv and Qww share
their eigensystem and can thus be diagonalised simultaneously. However, the role each
of the three eigenvectors is playing depends on the symmetry axis one is referring to.
This is illustrated by the sketch in Figure 2 where the polar angle θv is formed between
v̂i and the axis b̂3; the azimuthal angle ϕv is formed between the projection of v̂i onto
the b̂1–b̂2 plane and the b̂1-axis.

b2b1,b1b3,

b3b2,
ui'

vi'

v

v

u u

Figure 2. Sketch of the eigensystem (b̂1, b̂2, b̂3) (see text). Blue symbols are defined with respect to v̂′

i

whereas symbols in red refer to û′

i
. Polar and azimuthal angles θv and ϕv of the symmetry axis v̂′

i
are defined

as indicated in the figure. The role played by the three eigenvectors changes if the symmetry axis û′

i
is considered

as indicated such that b̂1 → b̂3, b̂2 → b̂1, and b̂3 → b̂2 (red symbols) and the corresponding angles θu and ϕu

are defined accordingly. The transformation (b̂1, b̂2, b̂3) → (b̂2, b̂3, b̂1) preserves the right-handedness of the
eigensystem.

We define as b̂3 the eigenvector corresponding to the eigenvalue λu
+. Similarly, we

take b̂1 to be the eigenvector corresponding to the eigenvalue λv
+. Last but not least,

b̂2 = b̂3× b̂1. Let us now introduce the standard basis (êx, êy, êz), where êT
x = (1, 0, 0),

êT
y = (0, 1, 0), êT

z = (0, 0, 1) and T denotes the transpose. We can then transform the
vectors ûi and v̂i given in the standard basis to new vectors û′

i and v̂′
i using the three

eigenvectors b̂1, b̂2, and b̂3 as the new reference frame. The transformations can be
cast as

û ′
i = Ruu ûi (38a)

v̂ ′
i = Rvv v̂i, i = 1, . . . , N, (38b)

where û′
i and v̂′

i depend on ϕu,v and θu,v as illustrated by the sketch in Figure 2. Note,
that ϕu,v and θu,v themselves are functions of the three Euler angles φi, θi, and χi.
In Equations (38), Ruu and Rvv are respective direction-cosine matrices between the

vectors of the standard basis and (b̂2, b̂3, b̂1) (reference to ûi) on the one hand and
(b̂1, b̂2, b̂3) (reference to v̂i) on the other hand.
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The relevant angles can then be computed via (see Figure 2)

cos θu,i = û ′
i · b̂1 (39a)

cos θv,i = v̂ ′
i · b̂3 (39b)

and

cosϕu,i =
(b̂2b̂2 + b̂3b̂3)û ′

i · b̂1∣∣∣(b̂2b̂2 + b̂3b̂3)û ′
i

∣∣∣
(40a)

cosϕv,i =
(b̂1b̂1 + b̂2b̂2)v̂ ′

i · b̂2∣∣∣(b̂1b̂1 + b̂2b̂2)v̂ ′
i

∣∣∣
. (40b)

The tensors in parentheses in Equations (40a) and (40b) effect a projection of û ′
i and

v̂ ′
i onto the b̂2–b̂3 and b̂1–b̂2 planes, respectively.
With the aid of Equations (39a) and (40a) on the one hand and (39b) and (40b) on

the other hand we are in a position to compute the odf from the expression

αu,v (ω) =

N∑

i=1

〈
δ
(
ω − ω′

i

)〉

2π∫

0

π∫

0

sin θ dθ dϕ
N∑

i=1

〈
δ
(
ω − ω′

i

)〉
, (41)

where 〈. . .〉 denotes an ensemble average [7], δ is the Dirac δ-function, and δ (ω − ω ′
i ) is

shorthand notation for δ (θ − θ ′
i ) δ (ϕ− ϕ′

i) / sin θ. The notation αu,v is used to indicate
that we have to consider two odf’s depending on whether ω′

i ≡ ω′
u,i = (ϕu,i, θu,i) or

ω′
i ≡ ω′

v,i = (ϕv,i, θv,i) (see Figure 2).
There is an additional benefit of using the rotated coordinate systems. As we will

demonstrate below the structure of the odf’s turns out to be particularly simple in the
rotated coordinate systems. For example, in a uniaxial nematic phase, αu will exhibit
two isolated maxima because of the reflection plane σh (see Figure 1); at the same time,
αv will have a band-like structure. In a biaxial nematic phase this band will change to
a sequence of isolated maxima separated by a certain angle increment.

3.3. Order parameters

To classify various disordered and ordered phases in our system we now introduce order
parameters via Equations (36) and (37). From the discussion in the preceding section

we saw that the (instantaneous) eigensystem formed by the three vectors b̂1, b̂2, and
b̂3 is shared by the three (instantaneous) tensors Quu, Qvv, and Qww. Moreover, by

definition, b̂1, b̂2, and b̂3 define a rotating reference frame. This implies that during the
course of a simulation none of these rotating frames is favoured over any other including
that represented by the standard basis. This allows us to simplify the subsequent
analysis by assuming that b̂1 = êx, b̂2 = êy, and b̂3 = êz without loss of complete
generality.
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We begin with the nematic order parameter defined as [cf., Ref. 45]

S =
1

2

∫
dΩ {3[û(Ω) · b̂3]2 − 1}α(Ω). (42)

The integrand in this equation contains the scalar product (û · b̂3)2 squared which
reflects the existence of the reflection plane σh (see Figure 1). We can rewrite this
expression using the tensor identity

(û · b̂3)2 = [(û · b̂3)û] · b̂3 = b̂3 · ûû · b̂3. (43)

Noting that 1 = b̂3 · 1 · b̂3, we can rewrite Equation (42) as

S =

∫
dΩ [b̂3 ·Q′

uu(Ω) · b̂3]α(Ω), (44)

where [cf., Equation (36)]

Q′
uu(Ω) =

1

2
[3û(Ω)û(Ω)− 1]. (45)

Alternatively, we may again start from Equation (42) and note that it may be
rewritten as

S =

∫
dΩD 2

00(Ω)α(Ω), (46)

where we have used the fact that on account of our choice b̂3 = êz the integrand can
be cast as

P2(cos θ) =
1

2
(3 cos2 θ − 1) = D 2

00(Ω), (47)

where cos θ = û · b̂3. Using in Equation (46) the expansion of the odf introduced in
Equation (31) we obtain

S =
∑

lmn

αl
|m||n|s

′
|m||n|

∫
dΩD 2

00
∗
(Ω)D l

mn(Ω), (48)

where s′mn = smn(2l+1)/8π2 and smn is given in Equation (32). Invoking Equation (21)
it is straightforward to verify that Equation (48) can be recast as

S = α2
00. (49)

It should be noted though that we included an extra factor of (2l + 1)/8π2 in the
definition of s′mn to ensure that the expansion coefficients {αl

|m||n|} become order pa-

rameters in the sense that the members of the set {αl
|m||n|} take values in the interval

[0, 1]. We also note in passing that together the expressions given in Equations (46)
and (47) agree with the one given by Camp and Allen [23] in their Equation (17),
Equation (3.9) of Mulder [21], and Equation (5) in the paper by Straley [24].
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Similarly, we can define the biaxiality order parameter through the expression

η ≡
1

2

∫
dΩ[(b̂1 · v̂)2 + (b̂2 · ŵ)2

−(b̂2 · v̂)2 − (b̂1 · ŵ)2]α(Ω). (50)

As in Equation (42) the integrand in Equation (50) involves only (squared) scalar

products between the vectors v̂ and ŵ and the two vectors b̂1 and b̂2 of the basis. As
before this reflects the existence of the other two planes of reflection σwu and σvu as
indicated by the cartoon in Figure 1. We can again take recourse to the tensor identity
in Equation (43) and rewrite Equation (50) as

η =
1

3

∫
dΩ [b̂1 ·Q′

vv · b̂1 + b̂2 ·Q′
ww · b̂2

−b̂2 ·Q′
vv · b̂2 − b̂1 ·Q′

ww · b̂1]α(Ω), (51)

where the tensors Q′
vv and Q′

ww are defined by complete analogy with the expression
given in Equation (36). We also emphasise that the expression presented in Equa-
tion (51) agrees with Equation (19) in the paper of Camp and Allen [23].

That Equation (50) is a physically sensible definition of the biaxiality order parame-
ter can be established as follows. Consider the case in which α is isotropic with respect
to the axes b̂1 and b̂2. Let then x be the cosine of the angles between each pair of the
four vectors b̂1 and b̂2 on the one hand and v̂ and ŵ on the other hand. Thus, we are
dealing with four integrals of the form ±

∫ 1
−1 dxx

2 = ±2
3 which cancel so that η = 0

in the absence of biaxial order.
Notice also, that even if α is isotropic with respect to b̂1 and b̂2 it may or may not

indicate alignment of the mesogens with respect to b̂3 so that S = 0 or S > 0. In the
latter case, the C2-axis of the mesogens normal to the reflection plane σh (see Figure1)
would be strongly aligned while the mesogens can freely rotate about this axis. If they
can no longer rotate freely about the C2-axis we have to anticipate that S > 0 and
η > 0.

We are now seeking to establish an alternative expression for η in terms of the Wigner
rotation matrices. To that end we remind the reader that because the mesogens are
centrosymmetric only even integers l, m, and n can arise. We also need to keep in
mind that we are deliberately neglecting any coupling between uniaxial and biaxial
degrees of freedom in the intermolecular interaction potential [see Equation (14)]. As
a consequence and according to Mulder “ . . . a spatially homogeneous phase will have a
symmetry higher or equal to that of the constituent particles . . .” [21]. By that token,
α2
20 = α2

02 = 0 because these expansion coefficients refer to a coupling between uniaxial
and biaxial degrees of freedom [see Equations (A11) and (A12)]. We verified that in
our simulations this expectation is met.

Moreover, invoking the same symmetry considerations delineated in Section 2, it
seems obvious that we can alternatively consider

η =
1

2

∫
dΩD 2

±2±2(Ω)α(Ω)

=
1

2

∑

lmn

αl
|m||n|s

′
|m||n|

∫
dΩD 2

±2±2
∗
(Ω)D l

mn(Ω) (52)
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where we employed Equation (31) and used D 2
±2±2 as shorthand notation for the ex-

pression D 2
22+D 2

22+D 2
22 +D 2

22. Because of this definition D 2
±2±2 is real. Invoking now

the orthogonality of the Wigner rotation matrices [see Equation (21)] we obtain

η =
1

2

∑

lmn

8π2

2l + 1
αl
|m||n|s

′
|m||n|δl2δm±2δn±2 (53)

which gives rise to four equivalent terms. Thus, using also Equation (32) together with
the definition of s′mn (see above) we arrive at our final result

η = α2
22. (54)

Finally, using the definition of the Wigner rotation matrices given in Equation (5)
it is relatively straightforward to show that

D 2
±2±2(Ω) =

(
cos2 θ + 1

)
cos (2φ) cos (2χ)

−2 cos θ sin (2φ) sin (2χ) . (55)

Thus, using this result in Equation (52) we obtain

η =

∫
dΩ

[
1

2

(
cos2 θ + 1

)
cos (2φ) cos (2χ)

− cos θ sin (2φ) sin (2χ)

]
α(Ω) (56)

which agrees with the expression presented in Equation (17) in the paper by Camp
and Allen [23] and also matches Equation (3.9) in Mulder’s paper [21] as well as
Equation (5) in the paper by Straley [24].

4. Results

Throughout this work all physical quantities will be given in the customary dimen-
sionless (i.e., “reduced”) units. A comprehensive compilation of dimensionless units can
be found in Appendix B of the book by Allen and Tildesley [46]. The results pre-
sented below have been obtained in Monte Carlo (MC) simulations carried out in the
isothermal-isobaric ensemble. In this ensemble one generates a Markov chain with a lim-
iting distribution in configuration space proportional to exp{−β[U+PV −Nβ−1 lnV ]}
where U is the total configurational potential energy, P denotes the pressure, and V
is the volume occupied by the N = 5000 mesogens.

Throughout this work, P = 1.00. Our simulation runs comprise 105 MC steps con-
sisting of N random rotations or displacements of the mesogens followed by one at-
tempt to change V . The decision whether a mesogen’s centre of mass is to be displaced
or whether it is rotated about one of its three symmetry axes is decided at random
with equal on-average probability. Whether or not any of these attempts is accepted is
decided on the basis of a modified Metropolis criterion such that the aforementioned
limiting distribution in configuration space will eventually be reached. For details the
interested reader is referred to standard textbooks in the field [46, 47].
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(a)

(b)

(c)

Figure 3. “Snapshots” of individual configurations obtained during the course of an MC simulation in the
isothermal isobaric ensemble. (a) Isotropic phase, T = 1.120; (b) uniaxial nematic phase, T = 1.030; (c) biaxial
nematic phase, T = 0.894. The snapshots have been obtained for ε′′ = 0.048. See text for an explanation of
the colour code (see also Sections 2 and 4.1).

4.1. The formation of uniaxial and biaxial nematic phases

We begin the presentation of our results in Figure 3 by presenting “snapshots” of con-
figurations obtained from our MC simulations. We remind the reader that in reality we
are dealing with spherical particles (see discussion in Section 2) where the interaction
potential is only equipped with certain symmetry elements corresponding to molecules
that pertain to the point group D2h. Matchboxes are just one of several possible re-
alisations of objects belonging to that point group. To enhance the visualization of
our simulation-generated data we arbitrarily assigned the shape of matchboxes to the
mesogens under study.

The mesogens are coloured according to the following algorithm. Consider the three
largest eigenvalues λu

+, λv
+, and λw

+ of the three tensors Quu, Qvv, and Qww obtained
from Equation (37). These eigenvalues are sorted such that µ+ = max(λu

+,λ
v
+,λ

w
+)

and µ− = min(λu
+,λ

v
+,λ

w
+); the remaining eigenvalue µ0 is then taken to be equal to

that eigenvalue in the triplet λu
+, λv

+, and λw
+ that is smaller than µ+ but larger than

µ−. The eigenvectors associated with µ+, µ0, and µ− are given by n̂+, n̂0, and n̂−,
respectively. They are also obtained as solutions of Equation (37).

We then introduce a triplet of real numbers bi = ûi ·n̂+, ri = v̂i·n̂−, and gi = ŵi·n̂0.
The triplet (ri, gi, bi) defines a point in the red, green, and blue (rgb) colour space.
Clearly, if the system is isotropic the mesogens appear in almost every colour of the
rgb colour space. This is the case in Figure 3(a). In a uniaxial nematic phase, bi is
largest whereas ri and gi are nearly zero. As a result the mesogens are predominantly
coloured in shades of blue. This is the situation depicted in Figure 3(b). Finally, if
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the system is in the biaxial nematic phase ri , gi , bi , 1.0 which corresponds to a
light grey or white colour. From Figure 3(c) we therefore conclude that this snapshot
corresponds to a state of high biaxial order.

0.04 0.06 0.08 0.10

ε′′

0.90

1.00

1.10

1.20

1.30

1.40
T

0.00

0.20

0.40

0.60

0.80

1.00

Figure 4. Plot of the arithmetic mean order parameter O (defined in the text) [see Equations (42) and (50)] in
the plane spanned by the temperature T and the dimensionless biaxial coupling constant ε′′ [see Equation (14)].
The value of O can be read off the attached colour bar. The white vertical lines correspond to temperature
scans for fixed biaxial coupling constants ε′′ = 0.03 [see Figure 5(a)], ε′′ = 0.05 [see Figure 5(b)], and ε′′ = 0.10
[see Figure 5(c).

To make this analysis more quantitative we consider in Figure 4 the order parameter
O = 1

2 (S + η) corresponding to the arithmetic mean of the uniaxial and biaxial order
parameters. On account of its definition, O = 0 in the isotropic liquid phase. In a
perfectly ordered, uniaxial nematic phase O = 0.5 whereas 0.5 ≤ O ≤ 1.0 if the
nematic phases possesses a certain degree of biaxial order. This is because in the
biaxial nematic phase both S and η are both fairly large.

The plot in Figure 4 shows that regardless of the value of ε′′ only an isotropic liquid
phase is thermodynamically stable if the temperature T is sufficiently high. As T is
lowered the mesogens begin to form a nematic phase which is uniaxial at first but then
quickly becomes biaxial to a certain degree. The degree of biaxiality increases as T is
lowered according to ones physical expectation.

As ε′′ decreases the temperature of the onset of order decreases as well. This is
plausible because the formation of order is foiled by the kinetic energy the mesogens
possess on average. For sufficiently low values ε′′ ! 0.04 it seems that even at the
lowest T considered, biaxial order is completely absent or at least very small. The
overall topology of the phase diagram plotted in Figure 4 matches qualitatively the
one obtained by Sonnet et al. [5] at mean-field level (see their Figure 4).

These general features are illustrated in greater detail by the plots in Figure 5. For a
relatively small biaxial coupling constant ε′′ = 0.03 the plots in Figure 5(a) show that
as T is lowered, both S and η are nearly zero as one would expect for an isotropic liquid.
At about T , 1.10, S increases rather abruptly and then keeps increasing slightly and
monotonically until T , 0.80 is reached. Because η , 0 almost all the way down to
T , 0.80, the increase of S at about T , 1.10 signals the formation of a uniaxial
nematic phase. We cannot go to significantly lower temperatures T ! 0.80 because of
the onset of a formation of glassy phases.

For a somewhat larger biaxial coupling constant ε′′ = 0.05 we see from Figure 5(b)
that we have two characteristic temperatures instead of just one. At both temperatures
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Figure 5. Plots of the nematic order parameter S (•) and of the biaxial order parameter η (") as functions
of the temperature T for (a) ε′′ = 0.03, (b) ε′′ = 0.05, and (c) ε′′ = 0.10 (see Figure 4). The solid lines
are intended to guide the eye and the vertical dashed lines demarcate the estimated (a) isotropic-uniaxial
nematic (T ' 1.10), (b) isotropic-uniaxial nematic (T ' 1.14) and uniaxial-biaxial nematic (T ' 0.99), and (c)
isotropic-biaxial nematic phase transitions (T ' 1.24).

the order parameters increase markedly and independently. At the higher T , 1.14 ,
S increases notably whereas η remains practically zero. Thus, at this temperature the
system undergoes a phase transition from an isotropic liquid to a uniaxial nematic
phase. As T is lowered further, S keeps increasing monotonically indicating that the
uniaxial nematic phase still becomes more ordered. At an even lower T , 1.00, the
biaxial order parameter η starts rising as well. This indicates that at this T we have a
transition from a uniaxial to a biaxial nematic phase.

Finally, for the largest biaxial coupling constant ε′′ = 0.10 the plots in Figure 5(c)
reveal that we have only a single transition during which S and η simultaneously rise
from about zero to fairly substantial values of S , η , 0.75. Thus, at the characteristic
temperature T , 1.24 at which this happens we observe a transition directly from an
isotropic liquid to a biaxial nematic without an intermittent uniaxial nematic phase.

Notice also that the isotropic-biaxial nematic transition in Figure 5(c) occurs at the
highest temperature compared with Figures 5(a) and 5(b). This is in line with one’s
physical intuition because the formation of a biaxial nematic is controlled by the largest
biaxial coupling constant considered in the three parts of Figure 5. Therefore ordered
phases may form even though the thermal energy of the mesogens is largest.
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Figure 6. Sketch of the equatorial planes introduced in Section 3.2 to promote the analysis of the orientation
distribution functions αu and αv. The colour code is the same as the one introduced in Figure 2. The rings
represent the respective equators in which αu and αv are computed after the rotations of the eigensystem
described in Section 3.2. Arrows in the equatorial planes indicate preferred orientations of the mesogens if the
system exhibits perfect uniaxial (a) or biaxial order (b).

4.2. Orientational and positional structure
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Figure 7. Plots of the orientation distribution function αu in the ϕ̃u–θu plane where ϕ̃u = ϕu − π (ϕu ∈
[0, 2π]) has been shifted to center the plots on ϕ̃ = 0. The value of αu can be read off the attached colour bar.
In all cases ε′′ = 0.048; (a) T = 1.04, (b) T = 0.91.

After focusing on the formation of uniaxial and biaxial nematic phases in the pre-
ceding section we now elucidate details of the structure of these phases. Before showing
any results we find it useful to remind the reader that we compute the odf’s not with
the original set of vectors {ûi} and {v̂i} but with the rotated vectors {û′

i} and {v̂′
i} in-

stead. The rotated vectors are obtained from Equations (38) as explained in Section 4.
Hence, vectors of the sets {û′

i} and {v̂′
i} lie in their respective equatorial planes.

In a perfectly ordered uniaxial nematic phase all vectors of the set {û′
i} are pointing

in the direction of the axis ±b̂2 of the equatorial plane represented by the red ring in
Figure 6(a). Because the perfect nematic phase is uniaxial the vectors of the set {v̂′

i}
are distributed uniformly along the equatorial plane represented by the blue ring in
Figure 6(a). Consequently, in a uniaxial nematic phase that is not perfectly ordered one

would expect αu to be centered on the axis labelled b̂2 in Figure 6(a) and represented
by the red arrow. The corresponding odf αv would be uniform along the equator in the
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plane b̂1–b̂2 with a certain width in the ±b̂3-direction.
In the perfectly ordered biaxial nematic phase, schematically represented by the plot

in Figure 6(b), the situation remains unaltered as far as αu is concerned. However, in
a perfect biaxial nematic phase the vectors of the set {v̂′

i} are all pointing along the

±b̂1-axis which is chosen at random with an equal probability. For a biaxial phase
that is not perfectly ordered one expects an odf consisting of four more or less sharp
maxima in the b̂1–b̂2 plane separated by an angle of π.
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Figure 8. As Figure 7 but for αv.

We begin our discussion by presenting in Figure 7 plots of αu. We see that in both
parts of the figure a single centrosymmetric spot appears that turns out to be higher
at the lower T . The spots are centered on θu = π

2 and ϕ̃u = 0. To make contact with

the cartoon shown in Figure 6(a) we see that the axis b̂1 should be orthogonal to the
paper plane. We emphasise that αu exhibits a second maximum at ϕ̃u = π which we
do not show in Figure 7. Because the spots in Figure 7 are centrosymmetric we can,
however, exclude the existence of any extrinsic biaxiality.

We can also interpret the plot in Figure 7(a) in a slightly different way. It is clear
that αu reflects the distribution of the orientations {ûi} about the nematic director n̂.
Therefore, n̂ is pointing in a direction normal to the paper plane. The centrosymmetric
spot of the odf in Figure 7(a) indicates that n̂ is a C∞ rotation axis.

Unfortunately, we cannot distinguish uniaxial from biaxial nematic phases on the
basis of αu alone which holds for the presence of intrinsic biaxiality. In order to dis-
criminate between both symmetries we need to consider the odf calculated for a second
symmetry axis. To that end we consider in Figure 8 plots of αv. The data plotted in
Figure 8(a) can be represented by a band-like structure of a certain width around
θv = π

2 extending along the ϕ̃v-axis. The existence of the band reflects the uniform
distribution of {v̂′

i} along the equatorial plane shown in Figure 6(a). The width of

the band is a measure of the average deviation of the vectors {v̂′
i} from the b̂3-axis.

Thus, on account of the combined information contained in Figures 7(a) and 8(a) we
conclude that the system is in the uniaxial nematic phase.

At the lower T = 0.91 the corresponding plot presented in Figure 8(b) now exhibits
a sequence of isolated, slightly elongated spots where the major axis is parallel to the
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Figure 9. Plot of the radial pair correlation function g (r12) as a function of the centre-of-mass distance r12
for a pair of mesogens at a temperature T = 0.89 and ε′′ = 0.05 at which the system is in the biaxial nematic
phase (see Figure 4).

ϕ̃v-axis and the minor axis is parallel to the θv-axis. Because of the arguments put
forth when discussing the cartoon shown in Figure 6(b), these centres of the spots are
separated by an angle increment of ∆ϕ̃v = π

2 . Thus, we conclude that the plots shown
in Figures 7(b) and 8(b) are indicative of a biaxial nematic phase. Notice again that
we are showing only one of the two maxima of which αv consists in the biaxial nematic
phase.

In other words, because the centrosymmetric character of the spot of αu in Fig-
ure 7(b) remains unchanged compared with Figure 7(a), n̂ remains a C∞ rotation axis
even if the system is biaxial. By the same token, αv plotted in Figure 8(b) reflects the
distribution of orientations of the mesogens about the secondary symmetry axis which
is also pointing in a direction normal to the paper plane. However, the difference is
that this secondary symmetry axis has C2 character unlike n̂. We ascribe this to the
lack of coupling between uniaxial and biaxial degrees of freedom in our model.

We now turn to an analysis of orientational and positional correlations in our system.
To make sure that our system is still fluidic we consider the radial pair correlation
function defined as [38]

g (r12) =
1

(8π2)2

∫∫
dΩ1dΩ2 g (r12,Ω1,Ω2) . (57)

A plot of this quantity is presented in Figure 9 for a thermodynamic state point at
which the system is in a stable biaxial nematic phase. As one can see in Figure 9,
spatial correlations are still short-range and decay within a couple of diameters σ of the
spherical core of our matchbox-symmetric mesogens. However, there is a noticeable shift
of the maxima to progressively smaller values of r12 that is untypical for a simple fluid.
Whereas the first peak of g appears at about the value at which uLJ in Equation (13)
passes through its minimum, higher-order peaks appear at non-integer multiples of the
position of the first maximum. This feature is ascribed to the different (non-spherical)
symmetry of the biaxial nematic phase. However, we emphasize that the curve shown
in Figure 9 is free of any pathological features that would indicate an artificial (and
unwanted) glassy structure.

We are now turning to the orientation correlation functions. These are accessible
through Equations (33). Generally speaking, the orientation correlation functions plot-

24



0.0

0.2

0.4

S2
, 2η2

0.0

0.4

0.8

2η2

S2

0.5

1.0

1.5

1.0 2.0 3.0 4.0

S22η2

〈S
n
1
n
2

2
2
0

〉 s
h
e
ll

(a)

〈S
n
1
n
2

2
2
0

〉 s
h
e
ll

(b)

〈S
n
1
n
2

2
2
0

〉 s
h
e
ll

r12

(c)

Figure 10. Plots of the orientation correlation functions
〈
Sn1n2

220

〉
shell

as functions of the distance r12 between
a pair of mesogens; (") n1 = n2 = 0, (•) n1 = ±2, n2 = ±2. In all parts of the figure, ε′′ = 0.05; (a) T = 1.12,
(b) T = 1.03, (c) T = 0.89. Also indicated are the limiting values of S2 and 2η2 obtained from Equations (42)
and (50). Note that in all three parts of the figure, the limiting values S2 and 2η2 are approached from above

as r12 increases according to one’s physical intuition.

ted in the three parts of Figure 10 exhibit far less structure than the radial pair cor-
relation function shown in Figure 9. In the isotropic phase, the plots presented in Fig-
ure 10(a) indicate that 〈Sn1n2

220 〉shell decay monotonically and vanish completely within
a couple of diameters σ of the spherical cores. It turns out that

〈
S±2±2
220

〉
shell

vanishes

more rapidly than
〈
S00
220

〉
shell

indicating that biaxial short-range order is lost earlier.
The data shown in Figure 10(b) pertain to a state point at which the system is in a

uniaxial nematic phase. This is concluded because
〈
S±2±2
220

〉
shell

is still short-range and

vanishes on a molecular length scale whereas
〈
S00
220

〉
shell

has become long-range with
no appreciable tendency to decay towards zero.

Finally, in the biaxial nematic phase
〈
S00
220

〉
shell

as well as
〈
S±2±2
220

〉
shell

exhibit long-
range order as one might have expected. However, it is particularly gratifying that in
all three parts of Figure 10 the curves decay to the values predicted by Equations (35a)
and (35b). This lends credibility to our simulations because the limiting values of S2

and 2η2 were computed independently from S and η as given by Equations (42) and
(50).

In view of the results just discussed it seems instructive to focus on the decay of
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Figure 11. Double-logarithmic plots of ∆Sn1n2

220
as functions of r12; (•) n1 = n2 = 0, (") n1 = ±2,

n2 = ±2. The straight fines are linear fits to the discrete data points. The data shown correspond to T = 1.08
and ε′′ = 0.05

short-range orientational correlations. To that end we consider

∆S00
220 ≡

〈
S00
220

〉
shell

− S2 (58a)

∆S±2±2
220 ≡

〈
S±2±2
220

〉
shell

− 2η2 (58b)

which vanish by definition in the limit of r12 → ∞. Moreover, let us assume that
both quantities defined in Equations (58) decay exponentially. Thus, we can define a
correlation length ξn1n2

as the slope of the straight lines shown in Figure 11.
Repeating the analysis illustrated by the plots in Figure 11 for different temperatures

we obtain the curves shown in Figure 12. The plots in Figure 12(a) show that ξ00
decays towards the temperature at which a uniaxial nematic phase forms; it assumes a
constant value of about 3.0 for all lower T . The plot of ξ±2±2 increases monotonically
throughout the temperature range considered. This correlates nicely with the absence
of a uniaxial-biaxial nematic transition but a steady increase of short-range biaxial
correlations in the corresponding Figure 5(a). It seems plausible that ξ00 assumes a
constant value once the uniaxial nematic phase has formed because of our definition
of the correlation lengths.

Similarly, the plots in Figure 12(b) show very similar trends. Towards the isotropic-
uniaxial nematic transition, ξ00 decays and then assumes a constant value for all lower
T . On the contrary, ξ±2±2 increases towards the uniaxial-biaxial nematic transition
and then decays again for all lower T . Notice, in particular, that below the uniaxial-
biaxial-nematic transition ξ00 ≈ ξ±2±2. The latter effect is seen more clearly in the plots
presented in Figure 12(c) where no noticeable variation of ξ00 and ξ±2±2 is detected
by lowering T below the isotropic-biaxial nematic transition temperature at T , 1.24.

5. Discussion and conclusions

By means of MC simulations in the isothermal-isobaric ensemble we investigate the
formation and properties of uniaxial and biaxial nematic phases in a thermotropic
liquid crystal. The liquid crystal is composed of matchbox-symmetric mesogens which
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Figure 12. Plots of the correlation length ξn1n2
(see text) as a function of the temperature T for n1 = n2 = 0

(•) and n1 = ±2, n2 = ±2 ("). Solid lines are fits to the discrete data points intended to guide the eye; (a)
ε′′ = 0.03, (b) ε′′ = 0.05, (c) ε′′ = 0.10. Vertical dashed lines indicate the temperatures at which ordered
phases form (cf., Figure 5).

possess an intrinsic biaxiality. This is reflected by the fact that the mesogens have
a major and two equivalent minor symmetry axes and thus possess three mutually
orthogonal reflection planes.

In a number of recent computer simulation studies [28, 48–50] the formation of
ordered phases was studied for models in which the molecular constituents interact
via purely hard repulsive potentials. In such systems it turns out to be a bit difficult
to form and stabilise ordered structures. This could be because of the purely entropic
nature of the interactions between the particles which may be too weak. In addition,
any attempt to change the orientation of the molecules during the course of a simulation
is difficult to accomplish. One way to overcome this difficulty is to use external fields
[50]. Another disadvantage of such model systems in computer simulations is that the
interaction strength cannot be controlled easily.

We are proposing a different strategy in this work. Rather than modeling the
shape of the mesogens explicitly we take spherical molecules and endow them with an
orientation-dependent attraction that accounts for the symmetry elements of molecules
of the desired point group. This philosophy follows in spirit the earlier work of Maier
and Saupe [41]. Thus, in a sense we are dealing with pseudo-shaped mesogens.

Systems composed of pseudo-shaped mesogens generally allow for an equilibration
that is orders of magnitude faster than for models with explicit shape dependence.
At the same time pseudo-shaped mesogens do exhibit physically sensible properties
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as we demonstrated in a number of earlier publications [51–53]. From our point of
view purely entropic interactions have quite a few shortcomings as far as simulation
studies are concerned. However, we stress that their use can be quite advantageous in
theoretical approaches such as classical density functional theory [54] on account of
the vanishing range of the entropic interactions.

In this work the interaction between a pair of mesogens is described by a model
potential where the orientation dependence is the same as that proposed originally
by Luckhurst and Romano [30]. The model proposed by these authors has also been
used later by Longa and Pająk [31]. In the Luckhurst-Romano model the orientation
dependence of the interactions follows from an expansion of the potential in terms of
Stone’s rotational invariants

{
Sn1n2

l1l2l

}
[29]. These functions are rotationally invariant

products of the Wigner rotation matrices D l
mn [38, 39]. However, we are using an

off-lattice model unlike the Luckhurst-Romano model.
We emphasise that the expansion in Wigner rotation matrices of the interaction

potential and of the orientation-dependent pair correlation function can also be cast
in terms of the contraction of Cartesian tensors. These tensors describe the coupling
between uniaxial degrees of freedom on the one hand and biaxial degrees of freedom on
the other hand. The latter formulation is identical with the one proposed by Sonnet et
al. [5] and by Sonnet and Virga [36]. We have verified here that both formulations are
indeed the same. The proof of this equivalence rests upon a ladder-operator algebra
[34] borrowed from the quantum-mechanical theory of angular momentum [35].

In summary, we are presenting three key results in this work. The first of these
concerns the good agreement of the topology of our phase diagram (see Figure 4) with
the one presented by Sonnet et al. [5] and obtained within their mean-field treatment.
Within the parameter space investigated here three types of phase transitions can
occur. The first of these exhibits only an isotropic to uniaxial nematic transition. The
second one allows for a sequence of separate isotropic-uniaxial nematic followed by
a uniaxial-biaxial nematic transition. The third scenario takes one directly from an
isotropic to a biaxial nematic phase. Relatively recent experimental evidence for the
latter two scenarios seems to be provided by 13C NMR spectroscopy [13]. Theoretically,
the above sequence of phase transitions is predicted by the phenomenological Ginzburg-
Landau theory [31].

The second key result concerns an analysis of the odf. From a separate analysis
of the odf’s referring to the respective major and (one of the two) minor symmetry
axes we can unambiguously distinguish between uniaxial nematic and biaxial nematic
orientational structures. At its core, the analysis is enabled by properly rotating the
molecular major and minor symmetry axes such that they always lie in the equatorial
plane of the unit sphere. This way we are able to combine an enhanced resolution of
the odf with a maximum statistical accuracy with which the odf’s are accessible in a
computer simulation. The idea to employ a rotating rather than a fixed reference frame
has been proposed in the work of Skutnik et al. [7].

On the basis of the odf one can unambiguously distinguish between a system with
intrinsic and one with extrinsic biaxiality. For the latter it was recently demonstrated
[7] that in a binary mixture of two uniaxial components a globally biaxial nematic phase
can form if the orientation dependence of the interaction between two unlike mesogens
is tuned such that a T-shaped arrangement is energetically favoured. In the biaxial
phase the odf is elliptically deformed in the ϕ̃–θ plane where the two major axes of the
ellipses are orthogonal to one another. In a system with extrinsic biaxiality only one
odf conveys the entire information about the structure of the biaxial nematic phase.
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Because of the reflection plane σh the αu exhibits two equivalent circular maxima that
are separated by an angle increment ∆ϕ̃u = π regardless of whether one is in the
uniaxial or biaxial nematic phase.

In the uniaxial nematic phase αv consists of a strip centered on θu = π
2 because there

is no particular order with respect to the two minor symmetry axes. In the biaxial
nematic phase, the reflection plane σwu

v suggests that the odf αv should also exhibit
two maxima separated by an angle ∆ϕ̃v = π. However, one observes two maxima that
are but separated by ∆ϕ̃v = π. This is because the two minor molecular axes v̂i and ŵi

are degenerate because we neglect the coupling between uniaxial and biaxial degrees
of freedom in our model. Thus, our mesogens pertain to the D2h point group.

The simple structure of the odf’s reflects the overall symmetry of the interaction
potential that does not contain a coupling between uniaxial and biaxial degrees of
freedom. Therefore, the two maxima of αu as well as the two maxima of αv in the
biaxial nematic phase have equal height. It is anticipated that when this symmetry is
broken by allowing for this coupling, the centrosymmetric spots of αu will be elliptically
deformed as well. In other words, the C∞ of n̂ will presumably change to the lower C2
symmetry already seen in αv in the present work.

The difference between that earlier work and the present one is that here we are
employing as a reference system the system of eigenvectors of the three alignment
tensors referring to the major and the two minor symmetry axes of the mesogens.
This approach follows in spirit the one used by Allen [22] and by Camp and Allen [23]
in their calculation of the uniaxial and biaxial order parameters. These authors did,
however, make no attempt to analyse the odf.

The third key result is related to our analysis of the orientation-dependent pair cor-
relation function when their expansion is made in terms of Stone’s rotational invariants
[29]. This expansion was proposed earlier by Blum and Torruella [55] who did, however,
not show any actual data for the expansion coefficients. We demonstrate in this work
that the expansion coefficients become long-range when an ordered phase has formed.
As we show here the limiting values of the correlation functions in general involve a
subtle coupling between different order parameters. The simpler result obtained quite
some time ago by Zannoni [37, 43] is recovered as a special case of our treatment.

Based upon the assumption that the decay of the expansion coefficients towards their
long-range value is exponential, we can extract a correlation length for the short-range
correlations. This correlation length assumes a constant value once the “macroscopi-
cally” ordered phase has formed. For thermodynamic states prior to the formation of
“macroscopically” ordered phases the temperature dependence of the correlation length
signals uniaxial or biaxial “pre-ordering”. The biaxial pre-ordering is a precursor of a
biaxial nematic phase eventually triggering the latter. This situation is very much akin
to that encountered experimentally where first tetrapodes are being synthesised that
are of biaxial symmetry only on a local length scale. These then initiate the formation
of a globally biaxial nematic phase given the right thermodynamic conditions [17].

Last but not least, we emphasise that the approach employed here is flexible enough
to be extended to treat interaction potentials in models of bent-core mesogens. These
mesogens have two rather than three reflection planes and thus a somewhat lower
symmetry compared with the matchbox-symmetric mesogens studied here. In these
systems undulated biaxial orientational order can emerge [see Figure 1(e) of Ref. 56].
Such undulated structures are conceivable if for the present model the uniaxial- and
biaxial-tensor contributions are modified to allow for a certain handedness of the inter-
action potential in two directions. That way it seems conceivable that one could study
systems exhibiting chiral C∗ phases. Work along these lines is currently in progress.
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Appendix A. Cartesian tensors

The purpose of this Appendix is to derive expressions for Sn1n2

220 arising in the expansion
of uaniso in Equation (6). We begin the discussion with S00

220 expressing it as a Cartesian
tensor according to [29]

2
√
5S00

220 (Ω1,Ω2,Ω12) = 3 (û1 · û2)
2 − 1, (A1)

where ûi is given in Equation (11a). Using the identity (see Section 2)

û1û1 : û2û2 = Tr (û1û1 · û2û2) = (û1 · û2)
2 (A2)

and the definition of U given in Equation (10a), it is a simple matter to verify that

S00
220 (Ω1,Ω2,Ω12) =

1√
5

3

2
U1 : U2 (A3)

To proceed it turns out to be most convenient [29] to draw upon the angular-
momentum algebra in quantum mechanics [35] and introduce the differential operator

Lj = −i∇Ωj
(A4)

such that [29]

Lj (v̂jŵjûj) =




0 −iûj iŵj

iûj 0 −iv̂j
−iŵj iv̂j 0



 . (A5)

Again by complete analogy with quantum mechanics we introduce the ladder operators

Lj± = Ljv ± iLjw (A6)

satisfying the equation

L1±Sn1n2

l1l2l
(Ω1,Ω2,Ω12)

= [l1 (l1 + 1)− n1 (n1 ∓ 1)]1/2 S(n1∓1)n2

l1l2l
(Ω1,Ω2,Ω12) . (A7)

The subscript j refers to the mesogen the ladder operator is acting upon.
Applying Equation (A7) to S00

220 and using Table 2 of the paper by Stone [29] we
obtain

L1+S00
220 =

√
6S10

220

=
1

2
√
5
(L1v + iL1w)

[
3 (û1 · û2)

2 − 1
]

=
3√
5
(û1 · û2) (v̂1 + iŵ1) · û2 (A8)

where we dropped the arguments of S00
220 and S10

220 for the time being and also used
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Equation (A5). From the previous expression it then follows that

S10
220 =

√
3

10
(û1 · û2) (v̂1 + iŵ1) · û2. (A9)

Applying L1+ one more time to this result we obtain

L1+S10
220 = 2S20

220

=

√
3

10
L1+ (û1 · û2) (v̂1 + iŵ1) · û2

=

√
3

10
[(v̂1 + iŵ1) · û2]

2

=

√
3

10

[
(v̂1 · û2)

2 − (ŵ1 · û2)
2 + 2i (v̂1 · û2) (ŵ1 · û2)

]
. (A10)

We can finally solve this expression for S20
220 and obtain

S20
220 =

1

2

√
3

10
[B1 : U2 + 2i (v̂1 · û2) (ŵ1 · û2)] , (A11)

where we used Equations (10a), (10b), (A2), and the fact that the tensors û2û2, v̂1v̂1,
and ŵ1ŵ1 satisfy the distributive law. Notice also that we do not have to worry whether
or not we have to take the transpose of any tensor arising in the above manipulations
because they are all real and symmetric.

The derivation of S20
220 proceeds exactly the same way. The calculation can be

shortened considerably by noting that in successive applications of L1−, L1−û1 =
− (v̂1 − iŵ1) whereas L1− (v̂1 − iŵ1) = 0. Thus, at the end of the day we obtain

S20
220 =

1

2

√
3

10
[B1 : U2 − 2i (v̂1 · û2) (ŵ1 · û2)] (A12)

which is identical with the expression in Equation (A11) except for the sign of the
imaginary term. Thus, because of the symmetry considerations delineated in Section 2
it seems sensible to introduce

S20
220 + S20

220 =

√
3

10
B1 : U2. (A13)

Finally, repeating the above analysis with L2± instead of L1± we would finally arrive
at

S02
220 + S02

220 =

√
3

10
U1 : B2 (A14)

and thus the coupling between uniaxial and biaxial degrees of freedom to uaniso would
be proportional to B1 : U2+U1 : B2. However, in the interest of minimum complexity
of the model we shall follow Sonnet et al. [5] and disregard this type of coupling
altogether. This last expression can be obtained by symmetry arguments. Because the
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mesogens are identical we can interchange the labels 1 and 2 and replace n1 by n2 and
vice versa.

Finally, using the same calculus as above and successively applying L2± twice to
Equations (A11) and (A12) we obtain four equations. For symmetry reasons discussed
in Section 2 we can use Equation (9). One notices that each term on the right-hand
side of this latter expression is of the general form

1

4

√
1

5
[(v̂1 ∓ iŵ1) · (v̂2 ∓ iŵ2)]

2 , (A15)

where the plus sign applies if the corresponding integer of Sn1n2

220 on the right-hand side
of Equation (9) is negative and vice versa. Using the definition of the biaxial tensor B
given in Equation (10b) as well as Equation (B.16) of Ref. 38 we obtain

S±2±2
220 =

√
1

5
B1 : B2 (A16)

as our final result.

Appendix B. Limiting value of the orientation correlation function

In this Appendix we rationalise Equations (33) for the limiting (r12 → ∞) behaviour
of the orientation correlation functions introduced in Equations (26a) and (26b). Using
Equations (30) and (31) we have

〈
Sn1n2

ll0

〉
∞

=
(−)l√
2l + 1

(
2l + 1

8π2

)2 ∑

m

(−)m

×
∑

l1m1k1

s|m1||k1|α
l1
|m1||k1|

×
∫

dΩ1D l1
m1k1

(Ω1)D l
mn

1

∗
(Ω2)

×
∑

l2m2k2

s|m2||k2|α
l2
|m2||k2|

×
∫

dΩ2D l2
m2k2

(Ω2)D l
mn

2

∗
(Ω2), (B1)

where the extra factors in the summations over l1,2, m1,2 and k1,2 are introduced for
the same reason as in Equation (18). Using Equation (A.93) of Ref. 38 this can be
rewritten as

〈
Sn1n2

ll0

〉
∞

=
(−)l√
2l + 1

∑

m

(−)m
∑

l1m1k1

∑

l2m2k2

s|m1||k1|s|m2||k2|

×αl1
|m1||k1|

αl2
|m2||k2|

δll1δll2δn1
k1
δn

2
k2
δm1mδm2m.

(B2)

32



We restrict the evaluation of this expression to even l for reasons already stated in
Section 2. In addition, the Kronecker symbols cause several of the summations to
collapse so that we can rewrite the previous equation more compactly as

√
2l + 1

〈
Sn1n2

ll0

〉
∞

=
∑

m1m2m

(−)m s|m1||n1|s|m2||n2|

×αl
|m1||n1|α

l
|m2||n2|δm1mδm2m. (B3)

Noticing that the integers m1 and m2 have to be even on account of the symmetry of
the odf [21] and evaluating the last two Kronecker symbols in the previous expression
we obtain

√
2l + 1

〈
Sn1n2

ll0

〉
∞

=
l∑

m=0

αl
m|n1|α

l
m|n2|2

δn10+δn20−2, (B4)

where we evaluated s|m1||k1|s|m2||k2| using Equation (32). Notice that in Equation (B4),
the summation is carried out only for positive m because terms for positive and negative
values of m are identical. This brings in an extra factor of 2 except for m = 0. To correct
for this we have introduced 2−δm0 . In addition, it should be borne in mind that on
account of the symmetry of the odf, αl

|m1||k1|
and αl

|m2||k2|
vanish for odd values of m1,

m2, k1, or k2 from the outset. From Equation (B4) it is easy to derive Equations (33)
and (34).
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