2,712 research outputs found
Neutron Diffuse Scattering from Polar Nanoregions in the Relaxor Pb(Mg1/3Nb2/3)O3
We have studied the neutron diffuse scattering in the relaxor PMN. The
diffuse scattering appears around the Burns temperature (~620K), indicating its
origin from the polar nanoregions (PNR). While the relative diffuse intensities
are consistent with previous reports, they are entirely different from those of
the lowest-energy TO phonon. Because of that, it has been considered that this
TO mode could not be the ferroelectric soft mode. Recently, a neutron
scattering study has unambiguously shown that the TO mode does soften on
cooling. If the diffuse scattering in PMN originates from the soft mode
condensation, then the atomic displacements must satisfy the center of mass
condition. But, the atomic displacements determined from diffuse scattering
intensities do not fulfill this condition. To resolve this contradiction, we
propose a simple model in which the total atomic displacement consists of two
components: is created by the soft mode condensation, satisfying
the center of mass condition, and, represents a uniform
displacement of the PNR along their polar direction relative to the surrounding
(unpolarized) cubic matrix. Within this framework, we can successfully describe
the neutron diffuse scattering intensities observed in PMN.Comment: 7 pages, 7 figures (Revised: 11-16-2001
Soft Mode Dynamics Above and Below the Burns Temperature in the Relaxor Pb(Mg_1/3Nb_2/3)O_3
We report neutron inelastic scattering measurements of the lowest-energy
transverse optic (TO) phonon branch in the relaxor Pb(Mg_1/3Nb_2/3)O_3 from 400
to 1100 K. Far above the Burns temperature T_d ~ 620 K we observe well-defined
propagating TO modes at all wave vectors q, and a zone center TO mode that
softens in a manner consistent with that of a ferroelectric soft mode. Below
T_d the zone center TO mode is overdamped. This damping extends up to, but not
above, the waterfall wave vector q_wf, which is a measure of the average size
of the PNR.Comment: 4 pages, 4 figures; modified discussion of Fig. 3, shortened
captions, added reference, corrected typos, accepted by Phys. Rev. Let
Magnetism of Superconducting UPt3
The phase diagram of superconducting in pressure-temperature
plane, together with the neutron scattering data is studied within a two
component superconducting order parameter scenario. In order to give a
qualitative explanation to the experimental data a set of two linearly
independent antiferromagnetic moments which emerge appropriately at the
temperature \mbox{} and \mbox{} and
couple to superconductivity is proposed. Several constraints on the fourth
order coefficients in the Ginzburg-Landau free energy are obtained.Comment: 17 pages, figures available on request to
[email protected]
Density matrix renormalisation group study of the correlation function of the bilinear-biquadratic spin-1 chain
Using the recently developed density matrix renormalization group approach,
we study the correlation function of the spin-1 chain with quadratic and
biquadratic interactions. This allows us to define and calculate the
periodicity of the ground state which differs markedly from that in the
classical analogue. Combining our results with other studies, we predict three
phases in the region where the quadratic and biquadratic terms are both
positive.Comment: 13 pages, Standard Latex File + 5 PostScript figures in separate (New
version with SUBSTANTIAL REVISIONS to appear in J Phys A
A Potts model for the distortion transition in LaMnO
The Jahn-Teller distortive transition of \lmo is described by a modified
3-state Potts model. The interactions between the three possible orbits depends
both on the orbits and their relative orientation on the lattice. Values of the
two exchange parameters which are chosen to give the correct low temperature
phase and the correct value for the transition temperature are shown to be
consistent with microscopy theory. The model predicts a first order transitions
and also a value for the entropy above the transition in good agreement with
experiment. The theory with the same parameters also predicts the temperature
dependence of the order parameter of orbital ordering agreeing well with
published experimental results. Finally, the type of the transition is shown to
be close to one of the most disordered phases of the generalised Potts model.
The short range order found experimentally above the transition is investigated
by this model.Comment: 16 pages, 7 figures and no tables. Re-submitted to Phys. Rev.
Equivalence between Poly\'a-Szeg\H{o} and relative capacity inequalities under rearrangement
The transformations of functions acting on sublevel sets that satisfy a
P\'olya-Szeg\H{o} inequality are characterized as those being induced by
transformations of sets that do not increase the associated capacity.Comment: 9 page
Pressure Induced Quantum Phase Transitions
A quantum critical point is approached by applying pressure in a number of
magnetic metals. The observed dependence of Tc on pressure necessarily means
that the magnetic energy is coupled to the lattice. A first order phase
transition occurs if this coupling exceeds a critical value: this is inevitable
if diverges as Tc approaches zero. It is argued that this is the cause of the
first order transition that is observed in many systems. Using Landau theory we
obtain expressions for the boundaries of the region where phase separation
occurs that agree well with experiments done on MnSi and other materials. The
theory can be used to obtain very approximate values for the temperature and
pressure at the tricritical point in terms of quantities measured at ambient
pressure and the measured values of along the second order line. The values of
the tricritical temperature for various materials obtained from Landau theory
are too low but it is shown that the predicted values will rise if the effects
of fluctuations are included.Comment: 12 pages including figure
- …