2,675 research outputs found

    Neutron Diffuse Scattering from Polar Nanoregions in the Relaxor Pb(Mg1/3Nb2/3)O3

    Full text link
    We have studied the neutron diffuse scattering in the relaxor PMN. The diffuse scattering appears around the Burns temperature (~620K), indicating its origin from the polar nanoregions (PNR). While the relative diffuse intensities are consistent with previous reports, they are entirely different from those of the lowest-energy TO phonon. Because of that, it has been considered that this TO mode could not be the ferroelectric soft mode. Recently, a neutron scattering study has unambiguously shown that the TO mode does soften on cooling. If the diffuse scattering in PMN originates from the soft mode condensation, then the atomic displacements must satisfy the center of mass condition. But, the atomic displacements determined from diffuse scattering intensities do not fulfill this condition. To resolve this contradiction, we propose a simple model in which the total atomic displacement consists of two components: δCM\delta_{CM} is created by the soft mode condensation, satisfying the center of mass condition, and, δshift\delta_{shift} represents a uniform displacement of the PNR along their polar direction relative to the surrounding (unpolarized) cubic matrix. Within this framework, we can successfully describe the neutron diffuse scattering intensities observed in PMN.Comment: 7 pages, 7 figures (Revised: 11-16-2001

    Soft Mode Dynamics Above and Below the Burns Temperature in the Relaxor Pb(Mg_1/3Nb_2/3)O_3

    Full text link
    We report neutron inelastic scattering measurements of the lowest-energy transverse optic (TO) phonon branch in the relaxor Pb(Mg_1/3Nb_2/3)O_3 from 400 to 1100 K. Far above the Burns temperature T_d ~ 620 K we observe well-defined propagating TO modes at all wave vectors q, and a zone center TO mode that softens in a manner consistent with that of a ferroelectric soft mode. Below T_d the zone center TO mode is overdamped. This damping extends up to, but not above, the waterfall wave vector q_wf, which is a measure of the average size of the PNR.Comment: 4 pages, 4 figures; modified discussion of Fig. 3, shortened captions, added reference, corrected typos, accepted by Phys. Rev. Let

    Magnetism of Superconducting UPt3

    Full text link
    The phase diagram of superconducting U ⁣Pt3U\!Pt_{3} in pressure-temperature plane, together with the neutron scattering data is studied within a two component superconducting order parameter scenario. In order to give a qualitative explanation to the experimental data a set of two linearly independent antiferromagnetic moments which emerge appropriately at the temperature \mbox{TN10TcT_{N}\sim 10\cdot T_{c}} and \mbox{TmTcT_{m}\sim T_{c}} and couple to superconductivity is proposed. Several constraints on the fourth order coefficients in the Ginzburg-Landau free energy are obtained.Comment: 17 pages, figures available on request to [email protected]

    Density matrix renormalisation group study of the correlation function of the bilinear-biquadratic spin-1 chain

    Full text link
    Using the recently developed density matrix renormalization group approach, we study the correlation function of the spin-1 chain with quadratic and biquadratic interactions. This allows us to define and calculate the periodicity of the ground state which differs markedly from that in the classical analogue. Combining our results with other studies, we predict three phases in the region where the quadratic and biquadratic terms are both positive.Comment: 13 pages, Standard Latex File + 5 PostScript figures in separate (New version with SUBSTANTIAL REVISIONS to appear in J Phys A

    A Potts model for the distortion transition in LaMnO3_3

    Full text link
    The Jahn-Teller distortive transition of \lmo is described by a modified 3-state Potts model. The interactions between the three possible orbits depends both on the orbits and their relative orientation on the lattice. Values of the two exchange parameters which are chosen to give the correct low temperature phase and the correct value for the transition temperature are shown to be consistent with microscopy theory. The model predicts a first order transitions and also a value for the entropy above the transition in good agreement with experiment. The theory with the same parameters also predicts the temperature dependence of the order parameter of orbital ordering agreeing well with published experimental results. Finally, the type of the transition is shown to be close to one of the most disordered phases of the generalised Potts model. The short range order found experimentally above the transition is investigated by this model.Comment: 16 pages, 7 figures and no tables. Re-submitted to Phys. Rev.

    Equivalence between Poly\'a-Szeg\H{o} and relative capacity inequalities under rearrangement

    Full text link
    The transformations of functions acting on sublevel sets that satisfy a P\'olya-Szeg\H{o} inequality are characterized as those being induced by transformations of sets that do not increase the associated capacity.Comment: 9 page

    Pressure Induced Quantum Phase Transitions

    Full text link
    A quantum critical point is approached by applying pressure in a number of magnetic metals. The observed dependence of Tc on pressure necessarily means that the magnetic energy is coupled to the lattice. A first order phase transition occurs if this coupling exceeds a critical value: this is inevitable if diverges as Tc approaches zero. It is argued that this is the cause of the first order transition that is observed in many systems. Using Landau theory we obtain expressions for the boundaries of the region where phase separation occurs that agree well with experiments done on MnSi and other materials. The theory can be used to obtain very approximate values for the temperature and pressure at the tricritical point in terms of quantities measured at ambient pressure and the measured values of along the second order line. The values of the tricritical temperature for various materials obtained from Landau theory are too low but it is shown that the predicted values will rise if the effects of fluctuations are included.Comment: 12 pages including figure
    corecore