37 research outputs found

    SiGeC/Si superlattice microcoolers

    Get PDF
    Monolithically integrated active cooling is an attractive way for thermal management and temperature stabilization of microelectronic and optoelectronic devices. SiGeC can be lattice matched to Si and is a promising material for integrated coolers. SiGeC/Si superlattice structures were grown on Si substrates by molecular beam epitaxy. Thermal conductivity was measured by the 3omega method. SiGeC/Si superlattice microcoolers with dimensions as small as 40×40 ”m^2 were fabricated and characterized. Cooling by as much as 2.8 and 6.9 K was measured at 25 °C and 100 °C, respectively, corresponding to maximum spot cooling power densities on the order of 1000 W/cm^2

    Cross-plane Seebeck coefficient of ErAs:InGaAs∕InGaAlAs superlattices

    Full text link
    We characterize cross-plane and in-plane Seebeck coefficients for ErAs:InGaAs/InGaAlAs superlattices with different carrier concentrations using test patterns integrated with microheaters. The microheater creates a local temperature difference, and the cross-plane Seebeck coefficients of the superlattices are determined by a combination of experimental measurements and finite element simulations. The cross-plane Seebeck coefficients are compared to the in-plane Seebeck coefficients and a significant increase in the cross-plane Seebeck coefficient over the in-plane Seebeck coefficient is observed. Differences between cross-plane and in-plane Seebeck coefficients decrease as the carrier concentration increases, which is indicative of heterostructure thermionic emission in the cross-plane direction. (c) 2007 American Institute of Physics

    Cross-plane lattice and electronic thermal conductivities of ErAs:InGaAs∕InGaAlAs superlattices

    Full text link
    We studied the cross-plane lattice and electronic thermal conductivities of superlattices made of InGaAlAs and InGaAs films, with the latter containing embedded ErAs nanoparticles (denoted as ErAs:InGaAs). Measurements of total thermal conductivity at four doping levels and a theoretical analysis were used to estimate the cross-plane electronic thermal conductivity of the superlattices. The results show that the lattice and electronic thermal conductivities have marginal dependence on doping levels. This suggests that there is lateral conservation of electronic momentum during thermionic emission in the superlattices, which limits the fraction of available electrons for thermionic emission, thereby affecting the performance of thermoelectric devices. (c) 2006 American Institute of Physics

    Cross-plane Seebeck coefficient of ErAs : InGaAs/InGaAlAs superlattices

    Get PDF
    Abstract We characterize cross-plane and in-plane Seebeck coefficients for ErAs:InGaAs/InGaAlAs superlattices with different carrier concentrations using test patterns integrated with microheaters. The microheater creates a local temperature difference, and the cross-plane Seebeck coefficients of the superlattices are determined by a combination of experimental measurements and finite element simulations. The cross-plane Seebeck coefficients are compared to the in-plane Seebeck coefficients and a significant increase in the cross-plane Seebeck coefficient over the in-plane Seebeck coefficient is observed. Differences between cross-plane and inplane Seebeck coefficients decrease as the carrier concentration increases, which is indicative of heterostructure thermionic emission in the cross-plane direction. We characterize cross-plane and in-plane Seebeck coefficients for ErAs: InGaAs/ InGaAlAs superlattices with different carrier concentrations using test patterns integrated with microheaters. The microheater creates a local temperature difference, and the cross-plane Seebeck coefficients of the superlattices are determined by a combination of experimental measurements and finite element simulations. The cross-plane Seebeck coefficients are compared to the in-plane Seebeck coefficients and a significant increase in the cross-plane Seebeck coefficient over the in-plane Seebeck coefficient is observed. Differences between cross-plane and in-plane Seebeck coefficients decrease as the carrier concentration increases, which is indicative of heterostructure thermionic emission in the cross-plane direction. Cross-plane Seebeck coefficient of ErAs: InGaAs/ InGaAlAs superlattice

    High-power-density spot cooling using bulk thermoelectrics

    No full text
    We demonstrate a three-dimensional (3D) bulk silicon microcooler, which has the advantages of high cooling power densities and is less dependent on thermoelectric element's thickness as compared with the same device with one-dimensional (1D) geometry. We measured a maximum cooling of 1.2 degreesC for a 40x40 mum(2) area bulk silicon microcooler device, which is equivalent to an estimated cooling power density of 580 W/cm(2). In this unique geometry, both current and heat spreading in 3D allows the maximum cooling temperature to exceed the conventional 1D thermoelectric model's theoretical limit 0.5 ZT(c)(2). (C) 2004 American Institute of Physics
    corecore