981 research outputs found

    Keck Spectroscopy of Dwarf Elliptical Galaxies in the Virgo Cluster

    Get PDF
    Keck spectroscopy is presented for four dwarf elliptical galaxies in the Virgo Cluster. At this distance, the mean velocity and velocity dispersion are well resolved as a function of radius between 100 to 1000 pc, allowing a clear separation between nuclear and surrounding galaxy light. We find a variety of dispersion profiles for the inner regions of these objects, and show that none of these galaxies is rotationally flattened.Comment: 4 pages, 2 figures, to appear in the proceedings of the Yale Cosmology Workshop "The Shapes of Galaxies and their Halos", (ed. P. Natarjan

    Stellar Kinematics of the Andromeda II Dwarf Spheroidal Galaxy

    Full text link
    We present kinematical profiles and metallicity for the M31 dwarf spheroidal (dSph) satellite galaxy Andromeda II (And II) based on Keck DEIMOS spectroscopy of 531 red giant branch stars. Our kinematical sample is among the largest for any M31 satellite and extends out to two effective radii (r_eff = 5.3' = 1.1 kpc). We find a mean systemic velocity of -192.4+-0.5 km/s and an average velocity dispersion of sigma_v = 7.8+-1.1 km/s. While the rotation velocity along the major axis of And II is nearly zero (<1 km/s), the rotation along the minor axis is significant with a maximum rotational velocity of v_max=8.6+-1.8 km/s. We find a kinematical major axis, with a maximum rotational velocity of v_max=10.9+-2.4 km/s, misaligned by 67 degrees to the isophotal major axis. And II is thus the first dwarf galaxy with evidence for nearly prolate rotation with a v_max/sigma_v = 1.1, although given its ellipticity of epsilon = 0.10, this object may be triaxial. We measured metallicities for a subsample of our data, finding a mean metallicity of [Fe/H] = -1.39+- 0.03 dex and an internal metallicity dispersion of 0.72+-0.03 dex. We find a radial metallicity gradient with metal-rich stars more centrally concentrated, but do not observe a significant difference in the dynamics of two metallicity populations. And II is the only known dwarf galaxy to show minor axis rotation making it a unique system whose existence offers important clues on the processes responsible for the formation of dSphs.Comment: 14 pages, 10 figures, 4 tables, accepted for publication in Ap

    Local Group Dwarf Elliptical Galaxies: II. Stellar Kinematics to Large Radii in NGC 147 and NGC 185

    Get PDF
    We present kinematic and metallicity profiles for the M31 dwarf elliptical (dE) satellite galaxies NGC 147 and NGC 185. The profiles represent the most extensive spectroscopic radial coverage for any dE galaxy, extending to a projected distance of eight half-light radii (8 r_eff = 14'). We achieve this coverage via Keck/DEIMOS multislit spectroscopic observations of 520 and 442 member red giant branch stars in NGC 147 and NGC 185, respectively. In contrast to previous studies, we find that both dEs have significant internal rotation. We measure a maximum rotational velocity of 17+/-2 km/s for NGC 147 and 15+/-5 km/s for NGC 185. The velocity dispersions decrease gently with radius with an average dispersion of 16+/-1 km/s for NGC 147 and 24+/-1 km/s for NGC 185. Both dEs have internal metallicity dispersions of 0.5 dex, but show no evidence for a radial metallicity gradient. We construct two-integral axisymmetric dynamical models and find that the observed kinematical profiles cannot be explained without modest amounts of non-baryonic dark matter. We measure central mass-to-light ratios of ML_V = 4.2+/-0.6 and ML_V = 4.6+/-0.6 for NGC 147 and NGC 185, respectively. Both dE galaxies are consistent with being primarily flattened by their rotational motions, although some anisotropic velocity dispersion is needed to fully explain their observed shapes. The velocity profiles of all three Local Group dEs (NGC 147, NGC 185 and NGC 205) suggest that rotation is more prevalent in the dE galaxy class than previously assumed, but is often manifest only at several times the effective radius. Since all dEs outside the Local Group have been probed to only inside the effective radius, this opens the door for formation mechanisms in which dEs are transformed or stripped versions of gas-rich rotating progenitor galaxies.Comment: 16 pages, 7 figures. accepted to A

    The Kinematics of the Ultra-Faint Milky Way Satellites: Solving the Missing Satellite Problem

    Get PDF
    We present Keck/DEIMOS spectroscopy of stars in 8 of the newly discovered ultra-faint dwarf galaxies around the Milky Way. We measure the velocity dispersions of Canes Venatici I and II, Ursa Major I and II, Coma Berenices, Hercules, Leo IV and Leo T from the velocities of 18 - 214 stars in each galaxy and find dispersions ranging from 3.3 to 7.6 km/s. The 6 galaxies with absolute magnitudes M_V < -4 are highly dark matter-dominated, with mass-to-light ratios approaching 1000. The measured velocity dispersions are inversely correlated with their luminosities, indicating that a minimum mass for luminous galactic systems may not yet have been reached. We also measure the metallicities of the observed stars and find that the 6 brightest of the ultra-faint dwarfs extend the luminosity-metallicity relationship followed by brighter dwarfs by 2 orders of magnitude in luminosity; several of these objects have mean metallicities as low as [Fe/H] = -2.3 and therefore represent some of the most metal-poor known stellar systems. We detect metallicity spreads of up to 0.5 dex in several objects, suggesting multiple star formation epochs. Having established the masses of the ultra-faint dwarfs, we re-examine the missing satellite problem. After correcting for the sky coverage of the SDSS, we find that the ultra-faint dwarfs substantially alleviate the discrepancy between the predicted and observed numbers of satellites around the Milky Way, but there are still a factor of ~4 too few dwarf galaxies over a significant range of masses. We show that if galaxy formation in low-mass dark matter halos is strongly suppressed after reionization, the simulated circular velocity function of CDM subhalos can be brought into approximate agreement with the observed circular velocity function of Milky Way satellite galaxies. [slightly abridged]Comment: 22 pages, 15 figures (12 in color), 6 tables, minor revisions in response to referee report. Accepted for publication in Ap

    Turning the Tides on the Ultra-Faint Dwarf Spheroidal Galaxies: Coma Berenices and Ursa Major

    Get PDF
    We present deep CFHT/MegaCam photometry of the ultra-faint Milky Way satellite galaxies: Coma Berenices (ComBer) and Ursa Major II (UMa II). These data extend to r ~ 25, corresponding to 3 mag below the main-sequence turn-offs in these galaxies. We robustly calculate a total luminosity of MV = –3.8 ± 0.6 for ComBer and MV = –3.9 ± 0.5 for UMa II, in agreement with previous results and confirming that these galaxies are among the faintest of the known dwarf satellites of the Milky Way. ComBer shows a fairly regular morphology with no signs of active tidal stripping down to a surface brightness limit of 32.4 mag arcsec–2. Using a maximum likelihood analysis, we calculate the half-light radius of ComBer to be r half = 74 ± 4 pc (5.8 ± 03) and its ellipticity = 0.36 ± 0.04. In contrast, UMa II shows signs of ongoing disruption. We map its morphology down to ÎŒ V = 32.6 mag arcsec–2 and found that UMa II is larger than previously determined, extending at least ~600 pc (11 on the sky) and it is also quite elongated with an overall ellipticity of = 0.50 ± 0.2. However, our estimate for the half-light radius, 123 ± 3 pc (14.1 ± 03) is similar to previous results. We discuss the implications of these findings in the context of potential indirect dark matter detections and galaxy formation. We conclude that while ComBer appears to be a stable dwarf galaxy, UMa II shows signs of ongoing tidal interaction

    A Megacam Survey of Outer Halo Satellites. IV. Two foreground populations possibly associated with the Monoceros substructure in the direction of NGC2419 and Koposov2

    Get PDF
    The origin of the Galactic halo stellar structure known as the Monoceros ring is still under debate. In this work, we study that halo substructure using deep CFHT wide-field photometry obtained for the globular clusters NGC2419 and Koposov2, where the presence of Monoceros becomes significant because of their coincident projected position. Using Sloan Digital Sky Survey photometry and spectroscopy in the area surrounding these globulars and beyond, where the same Monoceros population is detected, we conclude that a second feature, not likely to be associated with Milky Way disk stars along the line-of-sight, is present as foreground population. Our analysis suggests that the Monoceros ring might be composed of an old stellar population of age t ~ 9Gyr and a new component ~ 4Gyr younger at the same heliocentric distance. Alternatively, this detection might be associated with a second wrap of Monoceros in that direction of the sky and also indicate a metallicity spread in the ring. The detection of such a low-density feature in other sections of this halo substructure will shed light on its nature.Comment: 10 pages, 10 figures, accepted for publication in Ap
    • 

    corecore