22 research outputs found

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Sensor-Based Arm Skill Training in Chronic Stroke Patients: Results on Treatment Outcome, Patient Motivation, and System Usability

    No full text
    As stroke incidence increases, therapists' time is under pressure. Technology-supported rehabilitation may offer new opportunities. The objective of this study was to evaluate patient motivation for and the feasibility and effects of a new technology-supported task-oriented arm training regime (T-TOAT). Nine chronic stroke patients performed T-TOAT (2 × 30 min/day, four days/week) during eight weeks. A system including movement tracking sensors, exercise board, and software-based toolkit was used for skill training. Measures were recorded at baseline, after four and eight weeks of training, and six months posttraining. T-TOAT improved arm-hand performance significantly on Fugl-Meyer, Action Research Arm Test, and Motor Activity Log. Training effects lasted at least six months posttraining. Health-related-quality-of-life had improved significantly after eight weeks of T-TOAT with regard to perceived physical health, but not to perceived mental health (SF-36). None of the EuroQol-5D components showed significant differences before and after training. Participants were intrinsically motivated and felt competent to use the system. Furthermore, system usability was rated very good. However, exercise challenge as perceived by participants decreased significantly over eight weeks of training. The results of this study indicate that T-TOAT is feasible. Despite the small number of stroke patients tested, significant and clinically relevant improvements in skilled arm-hand performance were found

    Task-oriented arm training for stroke patients based on remote handling technology concepts:A feasibility study

    No full text
    BACKGROUND: Improving arm-hand skill performance is a major therapeutic target in stroke rehabilitation. Arm-hand rehabilitation may be enriched in content and variation by using technology-assisted training. Especially for people with a severely affected arm, technology-assisted training offers more challenging training possibilities. OBJECTIVE: The aim of this study was to explore the feasibility of ReHab-TOAT, a "Remote Handling Based Task-Oriented Arm Training" approach featuring enriched haptic feedback aimed at improving daily activities and participation. METHODS: Five subacute or chronic stroke patients suffering moderate to severe arm-hand impairments and five rehabilitation therapists participated. All participants received 2 ReHab-TOAT sessions. Outcome measure was a bespoke feasibility questionnaire on user experiences and satisfaction regarding 'motivation', 'individualization of training', 'potential training effects', and 'implementation in rehabilitation' of patients and therapists. RESULTS: Both patients and therapists experienced ReHab-TOAT as being feasible. They found ReHab-TOAT very motivating and challenging. All patients perceived an added value of ReHab-TOAT and would continue the training. Small improvements regarding exercise variability were suggested. CONCLUSION: ReHab-TOAT seems to be a feasible and very promising training approach for arm-hand rehabilitation of stroke patients with a moderately or severely affected arm. Further research is necessary to investigate potential training effects of ReHab-TOAT

    Accelerometry measuring the outcome of robot-supported upper limb training in chronic stroke: a randomized controlled trial.

    No full text
    This study aims to assess the extent to which accelerometers can be used to determine the effect of robot-supported task-oriented arm-hand training, relative to task-oriented arm-hand training alone, on the actual amount of arm-hand use of chronic stroke patients in their home situation.This single-blind randomized controlled trial included 16 chronic stroke patients, randomly allocated using blocked randomization (n = 2) to receive task-oriented robot-supported arm-hand training or task-oriented (unsupported) arm-hand training. Training lasted 8 weeks, 4 times/week, 2 × 30 min/day using the (T-)TOAT ((Technology-supported)-Task-Oriented-Arm-Training) method. The actual amount of arm-hand use, was assessed at baseline, after 8 weeks training and 6 months after training cessation. Duration of use and intensity of use of the affected arm-hand during unimanual and bimanual activities were calculated.Duration and intensity of use of the affected arm-hand did not change significantly during and after training, with or without robot-support (i.e. duration of use of unimanual use of the affected arm-hand: median difference of -0.17% in the robot-group and -0.08% in the control group between baseline and after training cessation; intensity of the affected arm-hand: median difference of 3.95% in the robot-group and 3.32% in the control group between baseline and after training cessation). No significant between-group differences were found.Accelerometer data did not show significant changes in actual amount of arm-hand use after task-oriented training, with or without robot-support. Next to the amount of use, discrimination between activities performed and information about quality of use of the affected arm-hand are essential to determine actual arm-hand performance.Controlled-trials.com ISRCTN82787126

    Data processing.

    No full text
    <p>A) Raw activity count data (solid) and filtered data (dashed) of the left hand; B) Raw activity count data (solid) and filtered data (dashed) of the right hand; C) Filtered data of both hands and summation of filtered data, including start points (+) and endpoints (O) of uptime; D) Raw activity count data of both hands including start points (+) and endpoints (O) of uptime.</p

    Set-up of the training, robotic device Haptic Master and Actiwatch.

    No full text
    <p>a) patient training in the robotic rehabilitation group, b) patient training in the control group, c) workspace of the Haptic Master (reprinted with permission from Van der Linde et al.<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0096414#pone.0096414-LindeVander1" target="_blank">[37]</a>), d) patient wearing actiwatches.</p

    Duration of arm-hand use.

    No full text
    <p>Boxplots of the duration of a) unimanual use of the affected arm-hand and b) bimanual use, expressed as a percentage of uptime. The circle represents an outlier and the star represents a far out value.</p

    Intensity of use of the affected arm-hand.

    No full text
    <p>Box plots of the intensity of use of the affected arm-hand during a) both unimanual and bimanual activity, b) unimanual activity of the affected arm-hand and c) bimanual activity. Circles represent outliers.</p
    corecore