30 research outputs found

    Ultra-Stretchable Interconnects for High-Density Stretchable Electronics

    Full text link
    The exciting field of stretchable electronics (SE) promises numerous novel applications, particularly in-body and medical diagnostics devices. However, future advanced SE miniature devices will require high-density, extremely stretchable interconnects with micron-scale footprints, which calls for proven standardized (complementary metal-oxide semiconductor (CMOS)-type) process recipes using bulk integrated circuit (IC) microfabrication tools and fine-pitch photolithography patterning. Here, we address this combined challenge of microfabrication with extreme stretchability for high-density SE devices by introducing CMOS-enabled, free-standing, miniaturized interconnect structures that fully exploit their 3D kinematic freedom through an interplay of buckling, torsion, and bending to maximize stretchability. Integration with standard CMOS-type batch processing is assured by utilizing the Flex-to-Rigid (F2R) post-processing technology to make the back-end-of-line interconnect structures free-standing, thus enabling the routine microfabrication of highly-stretchable interconnects. The performance and reproducibility of these free-standing structures is promising: an elastic stretch beyond 2000% and ultimate (plastic) stretch beyond 3000%, with 10 million cycles at 1000% stretch with <1% resistance change. This generic technology provides a new route to exciting highly-stretchable miniature devices.Comment: 13 pages, 5 figure, journal publicatio

    Multilayered Inclusions in Locally Resonant Metamaterials: Two-Dimensional Versus Three-Dimensional Modeling

    Get PDF
    Locally resonant metamaterials (LRMs) controlling low-frequency waves due to resonant scattering are usually characterized by narrow band gaps (BGs) and a poor wave filtering performance. To remedy this shortcoming, multiresonant metamaterial structures with closely located BGs have been proposed and widely studied. However, the analysis is generally limited to two-dimensional (2D) structures neglecting the finite height of any real resonator. The aim of this paper is the comparison of the wave dispersion for two-and threedimensional (3D) metamaterial models and evaluation of the applicability ranges of 2D results. Numerical study reveals that dual-resonant structures with cylindrical inclusions possess only a single (compared to two in the 2D case) BG for certain height-to-width ratios. In contrast, the wave dispersion in metamaterials with multiple spherical resonators can be accurately evaluated using a 2D approximation, enabling a significant simplification of resource-consuming 3D models

    Immunogenicity of an additional mRNA-1273 SARS-CoV-2 vaccination in people with HIV with hyporesponse after primary vaccination

    Get PDF
    Background:The COVIH study is a prospective coronavirus disease 2019 (COVID-19) vaccination study in 1154 people with HIV (PWH), of whom 14% showed reduced antibody levels after primary vaccination. We evaluated whether an additional vaccination boosts immune responses in these hyporesponders. Methods: The primary end point was the increase in antibodies 28 days after additional mRNA-1273 vaccination. Secondary end points included neutralizing antibodies, S-specific T-cell and B-cell responses, and reactogenicity. Results:Of the 66 participants, 40 previously received 2 doses ChAdOx1-S, 22 received 2 doses BNT162b2, and 4 received a single dose Ad26.COV2.S. The median age was 63 years (interquartile range [IQR], 60–66), 86% were male, and median CD4 + T-cell count was 650/μL (IQR, 423–941). The mean S1-specific antibody level increased from 35 binding antibody units (BAU)/ mL (95% confidence interval [CI], 24–46) to 4317 BAU/mL (95% CI, 3275–5360) (P &lt; .0001). Of all participants, 97% showed an adequate response and the 45 antibody-negative participants all seroconverted. A significant increase in the proportion of PWH with ancestral S-specific CD4 + T cells (P = .04) and S-specific B cells (P = .02) was observed. Conclusions:An additional mRNA-1273 vaccination induced a robust serological response in 97% of PWH with a hyporesponse after primary vaccination.</p

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    On the validity regime of the bulge equations

    No full text
    International audienceThe plane strain bulge test technique is a powerful and acknowledged technique for characterizing the mechanical behavior of thin films. In a bulge test analysis, the stress and strain are derived from the measured quantities using analytical approximations of the deformed geometry (bulge equations). To improve the bulge test, the systematic error introduced by these approximations is evaluated and quantified by scrutinizing the method on a finite element model of the bulge test, used as an idealized experiment

    Sampling point selection for energy estimation in the quasicontinuum method

    No full text
    The quasicontinuum (QC) method reduces computational costs of atomistic calculations by using interpolation between a small number of so-called repatoms to represent the displacements of the complete lattice and by selecting a small number of sampling atoms to estimate the total potential energy of the interpolated problem. In this contribution two new sampling point selections are introduced for the QC method. The first selection determines the total potential energy of the lattice exactly in correspondence with the interpolation. Since no error due to summation occurs, the fully resolved regions around lattice defects can remain small. However, in this case many sampling atoms must be used. Therefore a second sampling point selection is derived from the first selection that uses only one sampling atom to represent all atoms within interpolation together with the repatoms. This ensures that the exact lattice model is recovered in the fully resolved regions while a smooth transition is achieved towards coarse regions in which the method becomes very close to the local QC method

    STRAIN GRADIENT CRYSTAL PLASTICITY INCORPORATING GRAIN BOUNDARY EFFECTS

    No full text
    Summary This paper focuses on the micromechanical description of the mechanical response of an FCC multi-crystal microstructure on the basis of geometrical details (grains, orientations, internal/external boundaries) and the physics of the underlying plastic deformation (dislocation driven crystal plasticity). A strain gradient dependent crystal plasticity approach is presented to model the constitutive behavior of polycrystal FCC metals under large plastic deformations. The model is applied to predict the non-homogeneous deformation of a polycrystalline sample including grain boundary effects. The resulting response naturally leads to grain size effects and strengthening of the Hall-Petch type
    corecore