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Locally resonant metamaterials (LRMs) controlling
low-frequency waves due to resonant scattering are usually
characterized by narrow band gaps (BGs) and a poor wave fil-
tering performance. To remedy this shortcoming, multiresonant
metamaterial structures with closely located BGs have been
proposed and widely studied. However, the analysis is gener-
ally limited to two-dimensional (2D) structures neglecting the
finite height of any real resonator. The aim of this paper is
the comparison of the wave dispersion for two- and three-
dimensional (3D) metamaterial models and evaluation of the
applicability ranges of 2D results. Numerical study reveals
that dual-resonant structures with cylindrical inclusions possess
only a single (compared to two in the 2D case) BG for certain
height-to-width ratios. In contrast, the wave dispersion in
metamaterials with multiple spherical resonators can be accu-
rately evaluated using a 2D approximation, enabling a
significant simplification of resource-consuming 3D models.
[DOI: 10.1115/1.4035307]

1 Introduction

Mechanical metamaterials with unusual dynamic behavior are
artificially structured composites that exhibit absolute BGs—
frequency regions, within which wave propagation is inhibited. In
LRMs, the BGs are opened due to resonant scattering of elastic
waves from (non)periodic inhomogeneities on a subwavelength
scale. This important characteristic allows to control and

manipulate waves with wavelengths up to two-orders of
magnitude larger than the dimensions of resonators. This opens up
many promising applications, including subwavelength imaging
[1], seismic wave abatement [2], and acoustic cloaking [3], to
name a few. However, local resonances usually result in narrow
BGs with poor attenuation performance of LRMs.

Many efforts have been done to broaden BGs in LRMs.
Among these, a promising strategy is designing structures with
multiple local resonators. Larabi et al. [4] proposed multilay-
ered cylindrical resonators with coaxial alternating shells of
soft and hard materials and showed that closely located BGs
can be overlapped by adjusting the resonator geometry. Later,
the performance of a similar LRM was analyzed by using an
equivalent mass-in-mass dual-resonator model for blast-wave
impact mitigation [5]. Chen et al. [6] recently extended this
model to incorporate viscous effects of constitutive materials.
Zhu et al. [7] investigated the wave attenuation abilities of a
chiral LRM with multiple resonators both analytically and
experimentally. Similarly, for the acoustic field, Elford et al.
[8] proposed an LRM of a Matryoshka-like configuration of
slotted cylinders with numerous BGs in the subwavelength fre-
quency regime. Finally, the concept of multiple local resona-
tors was exploited by Kr€odel et al. [9] to propose large-scale
metamaterials for protecting civil infrastructures from earth-
quake excitations.

In all the mentioned studies, the resonators have a cylindri-
cal shape and are assumed to have an infinite or semi-infinite
length enabling 2D analysis. Actual resonators always have
finite sizes, e.g., in slab metamaterial geometries. Hence, one
objective of this study is to investigate the effect of the finite
height of resonators on the attenuation performance of meta-
materials with multiple resonators. A similar study for slab
phononic crystals with Bragg-type band gaps [10] revealed that
absolute BGs only exist for certain thickness to lattice size
ratios. To the best of our knowledge, such an analysis on
LRMs has not been performed yet. In addition, this letter aims
at generalizing a well-known conclusion [11] that a simplified
2D model can account for wave dispersion in a metamaterial
with a single-coated spherical inclusion to the case of multilay-
ered spherical resonators.

2 Cylindrical Resonators

Let us consider an LRM with multilayered co-axial resonators
of a cylindrical shape and height h, embedded in a solid matrix in
a periodic square array. The representative unit cell and its cross
section are shown in Fig. 1 along with relevant geometrical
parameters (in millimeter). The epoxy matrix is characterized by
Young’s modulus E¼ 3.6 GPa, Poisson’s ratio �¼ 0.37, and mass
density q¼ 1180 kg/m3. The central hard core and the thinnest
ring are made of tungsten with E¼ 411 GPa, �¼ 0.28, and
q¼ 19,250 kg/m3. The coating layers represented by two wide
rings are made of rubber with E¼ 150 kPa, �¼ 0.4995, and
q¼ 1300 kg/m3. Losses resulting from material dissipation are

Fig. 1 Schematic representation of the 3D unit cell and its
cross section for an LRM with multilayered cylindrical inclu-
sions (the geometrical parameters are given in millimeters)
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neglected in order to restrict the attenuation effects to local reso-
nance mechanisms, only. The geometry with thick rubber layers is
chosen to reduce computational costs, since the proper resolution
for the wavelength in the coating requires a rather fine mesh with
at least 4–6 finite elements across the thickness [12].

The 2D structure is analyzed first. In this case, the displacement
field u2Dðx; yÞ ¼ uxðx; yÞex þ uyðx; yÞey þ uzðx; yÞez and the wave
vector k2Dðx; yÞ ¼ kxðx; yÞex þ kyðx; yÞey are confined to the x–y
plane. Then, pure transverse (out-of-plane) modes governed by
uz(x, y) and mixed (in-plane) modes described by uxðx; yÞ; uyðx; yÞ
can propagate independently. According to the Bloch–Floquet
theorem, mechanical fields are periodic in a periodically struc-
tured medium that yields the following relations for displacements
at the unit cell boundaries [13]:

u2Dðxþ a1; yþ a2; kx; kyÞ ¼ u2Dðx; yÞexp½iðk2D � aÞ� (1)

where a ¼ axex þ ayey is the size of a representative unit cell
along the x and y directions. For the considered geometry,
ax¼ ay¼ a.

Next, a 3D slab structure of a finite height h is considered with
the displacement field u3Dðx; y; zÞ ¼ uxðx; y; zÞex þ uyðx; y; zÞey

þ uzðx; y; zÞez and the wave vector k3Dðx; yÞ ¼ kxðx; yÞex

þ kyðx; yÞey. The main difference with the 2D case is that the dis-
placement u3D varies across three dimensions, in contrast to
u2Dðx; yÞ in the 2D model. Thus, the finite height of the structure
and its influence on the local resonance BGs are properly
accounted for. The following Bloch conditions are applied at the
unit cell lateral boundaries:

u3Dðxþ a1; yþ a2; z; kx; kyÞ ¼ u3Dðx; y; zÞexp½iðk2D � aÞ� (2)

The slab boundary faces at z¼ 0 and z¼ h are traction-free.
Band structure diagrams for the two cases are usually evaluated

for the components of k along the boundary of the first irreducible
Brillouin zone C–X–M, see, e.g., Ref. [14] for details. The
corresponding frequencies can be calculated by means of the
finite-element method. In this study, the simulations have been
performed by using a commercial finite-element software. Each
unit cell is discretized by finite elements. For in-plane modes,
three-node Lagrange triangular linear finite elements available in
COMSOL MULTIPHYSICS 4.3 are used under plane strain assumption;
for out-of-plane modes, eight-node quadrilateral finite elements
are used for the acoustic modal analysis in MSC.Marc Mentat
2010. For the 3D slab geometry, the analysis is performed in
COMSOL MULTIPHYSICS 4.3 by using four-node Lagrange tetrahedral
linear finite elements.

The results for a coarse mesh agree well with those for a fine
mesh (the number of elements is doubled), when at least six finite
elements across the thickness of each rubber coating layer are
used. Thus, confirming mesh convergence for all the calculated
data.

Band diagram for the out-of-plane modes shown in Fig. 2(a)
exhibits two local resonance BGs at frequencies between
f¼ 110 Hz and f¼ 174 Hz, f¼ 212 and f¼ 271 Hz. The BGs are
opened at frequencies, when the stiff parts of the resonator
vibrate as rigid bodies out-of-phase with respect to the matrix
and each other with maximum displacements in the internal core
(Figs. 2(c) and 2(d)). For the in-plane modes, the band diagram
shown in Fig. 2(b) has a similar structure with approximately
twice the number of pass bands and two BGs between
f¼ 425 Hz and f¼ 457 Hz, f¼ 618 Hz and f¼ 668 Hz induced in
a similar manner, as described in detail in Ref. [4]. Vibration
patterns at the frequencies f¼ 185 Hz and f¼ 425 Hz indicate
pure torsional motion, when the core rotates within the coating
(Fig. 2(e)) and translational motion of the internal core within
the coating (Fig. 2(f)), respectively.

Figure 3(a) shows the band diagram for the LRM3 with
h¼ 0.2a, where a¼ 25 mm is the in-plane unit cell size. The band
diagrams for 2D and 3D slab unit cells have a similar structure
characterized by the presence of a number of localized modes
represented by flat curves. Most of the localized modes in the 3D
unit cell have an equivalent mode among the 2D in-plane and
out-of-plane modes located at almost the same frequencies. The
corresponding vibration patterns indicate the dominant planar or
out-of-plane motions at those frequencies. The displacement fields
at the high-symmetry point X at frequencies f¼ 105 Hz and
f¼ 185 Hz (Figs. 3(b) and 3(c)) resemble the vibration patterns of
a 2D out-of-plane mode, which constitutes the bound of the BG,
and an in-plane torsional mode, respectively. However, in the
band diagram for the 3D case, mixed localized modes also exist
without any dominant displacement as the one shown in Fig. 3(d)
for the lower BG bound.

The main distinction between the 2D and 3D simulation results
is the existence of only one BG in the 3D case extending from
206 Hz to 259 Hz. The BG frequencies correspond to those for the
second BG of the 2D out-of-plane modes with the displacement
field at the upper bound indicating dominant out-of-plane motions
(Fig. 3(e)). However, as mentioned above, the lower bound of the
BG is formed by a mixed mode with strong planar displacements.

In the 3D case, the BG size appears to be strongly dependent on
the slab height, as also observed for phononic structures [10]. The
performed analysis reveals that as the height of the slab increases,
the BG decreases in width and shifts to higher frequencies. A gap
map displaying the dependence of BG frequencies on the height

Fig. 2 Band diagrams for 2D out-of-plane (a) and in-plane (b) modes in the LRM with infinite value of h. Vibration
patterns of the 2D localized out-of-plane—(c) f 5 110 Hz and (d) f 5 212 Hz—and in-plane modes—(e) f 5 185 Hz and
(f) f 5 425 Hz.
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of the unit cell is shown in Fig. 3(f). The BG is completely closed
for h/a¼ 0.5. For values between h/a¼ 0.5 and h/a¼ 2, no BG
can be observed in the considered frequency range. Note that for
larger ratios of h/a, the simulations become computationally very
demanding, since the number of finite elements increases
considerably.

Similar dependence of the BG size on the h/a ratio (Fig. 3(f))
has been observed for phononic structures [10]. However, in the
case of LRMs, the band gap closing occurs due to the appearance
of 3D mixed modes characterized by coupled in-plane and out-of-
plane displacements as opposed to higher-order slab modes in
phononic structures. Thus, the conditions for the BG opening are
satisfied only for h/a< 0.5 in the low-frequency range. As the
value of h/a increases, more mixed modes appear, and the lower
band gap border (Fig. 3(d)) is shifted to higher frequencies and
eventually closes the BG at h/a¼ 0.5.

Finally, it can be concluded that band diagrams for the 2D
model of a LRM with multilayered cylindrical resonators are
inappropriate to predict BG location for structures of a finite
height due to the coupling between in-plane and out-of-plane
modes. In practice, this means that the 2D results only make sense
if one ensures that only one type of the modes is excited; however,
mode coupling can still be triggered at the sample boundaries. In
general, theoretical predictions based on 2D simulations for
locally resonant metamaterials must be interpreted with caution.

3 Spherical Resonators

In this section, a metamaterial is considered that is composed
by a square array of multilayered concentric spheres with a stiff
core and alternating layers of stiff and compliant materials. A

representative unit cell is shown in Fig. 4. The material parame-
ters for the constituents and the geometrical dimensions are the
same as those in Sec. 2, (see Fig. 1(b)). To model elastic waves
propagating in the XY plane, standard Bloch boundary conditions
are applied at the faces normal to x and y axes. At the two remain-
ing faces, either traction-free or periodic (continuity) boundary
conditions can be applied to model slab or infinite periodic meta-
material geometries, respectively. In this way, the influence of
boundary conditions on the metamaterial wave dispersion can be
analyzed. Dispersion diagrams are evaluated using 3D finite-
element models with ca. 95,000 tetrahedral elements in COMSOL

MULTIPHYSICS 5.0.
Figures 5(a) and 5(b) show the band diagrams for the consid-

ered metamaterial with free and periodic boundary conditions,
respectively. For both cases, two closely located BGs exist at
approximately the same frequencies as for the 2D in-plane modes
(see Fig. 2(b)). The differences in BG frequencies for the 2D and
3D cases are attributed to different volume fractions of compliant
and stiff materials for the same cross-sectional geometric parame-
ters resulting in the shift of the resonator eigenfrequencies. In con-
trast to the case of cylindrical resonators shown in Fig. 3(a), the
band diagrams in Figs. 5(a) and 5(b) reveal a smaller number of
bands, since the frequencies corresponding to the 2D out-of-plane
modes are completely absent in the case of spherical resonators.

Fig. 3 (a) Band diagram of a 3D slab of height h 5 0.2a. (b)–(e) Vibration patterns of the localized modes for the slab with
height h 5 0.2a. (f) Complete band gap frequencies as a function of the unit cell height-to-width ratio h/a. (b) f 5 105 Hz,
(c) f 5 185 Hz, (d) f 5 206 Hz, and (e) f 5 259 Hz.

Fig. 4 Schematic representation of a 3D unit cell for an LRM
with multilayered spherical inclusions

Fig. 5 Band diagrams for the metamaterial shown in Fig. 4
with (a) periodic and (b) traction-free boundary conditions at
the faces normal to the z axis, respectively
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By comparing the two diagrams, it is obvious that in the case of
free boundaries, the modes approach their asymptotic values
slower, as the value of the wave vector increases. This also results
in a slightly smaller width of the second BG around 600 Hz. In
general, the analyzed boundary conditions do not really influence
the band structure diagrams. Hence, one may conclude that wave
dispersion in 3D slab and 2D infinite metamaterial structures with
multilayered spherical inclusions are almost indistinguishable.
This conclusion is unexpected, since usually slab geometries
reveal more complicated dispersion properties, accompanied by
additional pass bands due to wave scattering at free boundaries.

The obtained results show that dispersion properties of 3D
LRM with multilayered spherical inclusions can be correctly
approximated by the 2D in-plane modes of the metamaterial cen-
tral cross section. Thus, the conclusion derived by Liu et al. [11]
for a case of a stiff spherical resonator coated with a rubber
layer remains valid for multilayered resonators. This allows to
reduce the simulation time and computation costs significantly.
Moreover, it offers a quick and reasonably good estimate of the
BG frequencies of these 3D structures.

4 Conclusions

In this letter, we studied the elastic wave propagation in 2D and
3D LRMs with multilayered resonators and found that the
theoretical predictions based on 2D simulations, widely used in
the literature, must be interpreted with caution. The wave disper-
sion in 3D metamaterial structures was found to be strongly influ-
enced by the resonator’s shape. Entirely different behaviors were
observed for the resonators of a cylindrical and spherical shape
with the same metamaterial midplane cross section. Three-
dimensional slab structures with cylindrical dual resonators pos-
sess only one BG (in contrast to the expected double BGs given
by the 2D analysis). Moreover, the BG bound frequencies have
been shown to depend strongly on the height/width ratios that can-
not be predicted by 2D models neglecting the resonator height.
This result is analogous to the one known for slab phononic crys-
tals. For spherical resonators, the wave dispersion and BG fre-
quencies can be adequately described by using in-plane modes of
the 2D approximation. Moreover, it was found that wave charac-
teristics are almost indistinguishable for 3D slab and 2D infinite
metamaterial geometries with spherical resonators. This result
may facilitate the modeling of the computationally expensive 3D
LRMs with multiple resonators.
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