3,056 research outputs found

    Modeling laser wakefield accelerators in a Lorentz boosted frame

    Get PDF
    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference \cite{VayPRL07} is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high-frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing the frame of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively

    Quasi-monoenergetic femtosecond photon sources from Thomson Scattering using laser plasma accelerators and plasma channels

    Full text link
    Narrow bandwidth, high energy photon sources can be generated by Thomson scattering of laser light from energetic electrons, and detailed control of the interaction is needed to produce high quality sources. We present analytic calculations of the energy-angular spectra and photon yield that parametrize the influences of the electron and laser beam parameters to allow source design. These calculations, combined with numerical simulations, are applied to evaluate sources using conventional scattering in vacuum and methods for improving the source via laser waveguides or plasma channels. We show that the photon flux can be greatly increased by using a plasma channel to guide the laser during the interaction. Conversely, we show that to produce a given number of photons, the required laser energy can be reduced by an order of magnitude through the use of a plasma channel. In addition, we show that a plasma can be used as a compact beam dump, in which the electron beam is decelerated in a short distance, thereby greatly reducing radiation shielding. Realistic experimental errors such as transverse jitter are quantitatively shown to be tolerable. Examples of designs for sources capable of performing nuclear resonance fluorescence and photofission are provided

    Effects of Hyperbolic Rotation in Minkowski Space on the Modeling of Plasma Accelerators in a Lorentz Boosted Frame

    Full text link
    Laser driven plasma accelerators promise much shorter particle accelerators but their development requires detailed simulations that challenge or exceed current capabilities. We report the first direct simulations of stages up to 1 TeV from simulations using a Lorentz boosted calculation frame resulting in a million times speedup, thanks to a frame boost as high as gamma=1300. Effects of the hyperbolic rotation in Minkowski space resulting from the frame boost on the laser propagation in the plasma is shown to be key in the mitigation of a numerical instability that was limiting previous attempts

    Laser-heater assisted plasma channel formation in capillary discharge waveguides

    Full text link
    A method of creating plasma channels with controllable depth and transverse profile for the guiding of short, high power laser pulses for efficient electron acceleration is proposed. The plasma channel produced by the hydrogen-filled capillary discharge waveguide is modified by a ns-scale laser pulse, which heats the electrons near the capillary axis. This interaction creates a deeper plasma channel within the capillary discharge that evolves on a ns-time scale, allowing laser beams with smaller spot sizes than would otherwise be possible in the unmodified capillary discharge.Comment: 5 pages, 3 figure

    The influence of lysosomes on glycogen metabolism

    Full text link

    Computational accelerator science needs towards laser-plasma accelerators for future colliders

    Full text link
    Laser plasma accelerators have the potential to reduce the size of future linacs for high energy physics by more than an order of magnitude, due to their high gradient. Research is in progress at current facilities, including the BELLA PetaWatt laser at LBNL, towards high quality 10 GeV beams and staging of multiple modules, as well as control of injection and beam quality. The path towards high-energy physics applications will likely involve hundreds of such stages, with beam transport, conditioning and focusing. Current research focuses on addressing physics and R&D challenges required for a detailed conceptual design of a future collider. Here, the tools used to model these accelerators and their resource requirements are summarized, both for current work and to support R&D addressing issues related to collider concepts

    Annealed Silver-Island Films for Applications in Metal-Enhanced Fluorescence: Interpretation in Terms of Radiating Plasmons

    Get PDF
    The effects of thermally annealed silver island films have been studied with regard to their potential applicability in applications of metal-enhanced fluorescence, an emerging tool in nano-biotechnology. Silver island films were thermally annealed between 75 and 250°C for several hours. As a function of both time and annealing temperature, the surface plasmon band at ≈420 nm both diminished and was blue shifted. These changes in plasmon resonance have been characterized using both absorption measurements, as well as topographically using Atomic Force Microscopy. Subsequently, the net changes in plasmon absorption are interpreted as the silver island films becoming spherical and growing in height, as well as an increased spacing between the particles. Interestingly, when the annealed surfaces are coated with a fluorescein-labeled protein, significant enhancements in fluorescence are osbserved, scaling with annealing temperature and time. These observations strongly support our recent hypothesis that the extent of metal-enhanced fluorescence is due to the ability of surface plasmons to radiate coupled fluorophore fluorescence. Given that the extinction spectrum of the silvered films is comprised of both an absorption and scattering component, and that these components are proportional to the diameter cubed and to the sixth power, respectively, then larger structures are expected to have a greater scattering contribution to their extinction spectrum and, therefore, more efficiently radiate coupled fluorophore emission. Subsequently, we have been able to correlate our increases in fluorescence emission with an increased particle size, providing strong experiment evidence for our recently reported metal-enhanced fluorescence, facilitated by radiating plasmons hypothesis
    corecore