23 research outputs found

    Subsequent Surgery After Revision Anterior Cruciate Ligament Reconstruction: Rates and Risk Factors From a Multicenter Cohort

    Get PDF
    BACKGROUND: While revision anterior cruciate ligament reconstruction (ACLR) can be performed to restore knee stability and improve patient activity levels, outcomes after this surgery are reported to be inferior to those after primary ACLR. Further reoperations after revision ACLR can have an even more profound effect on patient satisfaction and outcomes. However, there is a current lack of information regarding the rate and risk factors for subsequent surgery after revision ACLR. PURPOSE: To report the rate of reoperations, procedures performed, and risk factors for a reoperation 2 years after revision ACLR. STUDY DESIGN: Case-control study; Level of evidence, 3. METHODS: A total of 1205 patients who underwent revision ACLR were enrolled in the Multicenter ACL Revision Study (MARS) between 2006 and 2011, composing the prospective cohort. Two-year questionnaire follow-up was obtained for 989 patients (82%), while telephone follow-up was obtained for 1112 patients (92%). If a patient reported having undergone subsequent surgery, operative reports detailing the subsequent procedure(s) were obtained and categorized. Multivariate regression analysis was performed to determine independent risk factors for a reoperation. RESULTS: Of the 1112 patients included in the analysis, 122 patients (11%) underwent a total of 172 subsequent procedures on the ipsilateral knee at 2-year follow-up. Of the reoperations, 27% were meniscal procedures (69% meniscectomy, 26% repair), 19% were subsequent revision ACLR, 17% were cartilage procedures (61% chondroplasty, 17% microfracture, 13% mosaicplasty), 11% were hardware removal, and 9% were procedures for arthrofibrosis. Multivariate analysis revealed that patients aged <20 years had twice the odds of patients aged 20 to 29 years to undergo a reoperation. The use of an allograft at the time of revision ACLR (odds ratio [OR], 1.79; P = .007) was a significant predictor for reoperations at 2 years, while staged revision (bone grafting of tunnels before revision ACLR) (OR, 1.93; P = .052) did not reach significance. Patients with grade 4 cartilage damage seen during revision ACLR were 78% less likely to undergo subsequent operations within 2 years. Sex, body mass index, smoking history, Marx activity score, technique for femoral tunnel placement, and meniscal tearing or meniscal treatment at the time of revision ACLR showed no significant effect on the reoperation rate. CONCLUSION: There was a significant reoperation rate after revision ACLR at 2 years (11%), with meniscal procedures most commonly involved. Independent risk factors for subsequent surgery on the ipsilateral knee included age <20 years and the use of allograft tissue at the time of revision ACLR

    Association Between Graft Choice and 6-Year Outcomes of Revision Anterior Cruciate Ligament Reconstruction in the MARS Cohort

    No full text
    BackgroundAlthough graft choice may be limited in the revision setting based on previously used grafts, most surgeons believe that graft choice for anterior cruciate ligament (ACL) reconstruction is an important factor related to outcome.HypothesisIn the ACL revision setting, there would be no difference between autograft and allograft in rerupture rate and patient-reported outcomes (PROs) at 6-year follow-up.Study designCohort study; Level of evidence, 2.MethodsPatients who had revision surgery were identified and prospectively enrolled in this cohort study by 83 surgeons over 52 sites. Data collected included baseline characteristics, surgical technique and pathology, and a series of validated PRO measures. Patients were followed up at 6 years and asked to complete the identical set of PRO instruments. Incidence of additional surgery and reoperation because of graft failure were also recorded. Multivariable regression models were used to determine the predictors (risk factors) of PROs, graft rerupture, and reoperation at 6 years after revision surgery.ResultsA total of 1234 patients including 716 (58%) men were enrolled. A total of 325 (26%) underwent revision using a bone-patellar tendon-bone (BTB) autograft; 251 (20%), soft tissue autograft; 289 (23%), BTB allograft; 302 (25%), soft tissue allograft; and 67 (5%), other graft. Questionnaires and telephone follow-up for subsequent surgery information were obtained for 809 (66%) patients, while telephone follow-up was only obtained for an additional 128 patients for the total follow-up on 949 (77%) patients. Graft choice was a significant predictor of 6-year Marx Activity Rating Scale scores (P = .024). Specifically, patients who received a BTB autograft for revision reconstruction had higher activity levels than did patients who received a BTB allograft (odds ratio [OR], 1.92; 95% CI, 1.25-2.94). Graft rerupture was reported in 5.8% (55/949) of patients by their 6-year follow-up: 3.5% (16/455) of patients with autografts and 8.4% (37/441) of patients with allografts. Use of a BTB autograft for revision resulted in patients being 4.2 times less likely to sustain a subsequent graft rupture than if a BTB allograft were utilized (P = .011; 95% CI, 1.56-11.27). No significant differences were found in graft rerupture rates between BTB autograft and soft tissue autografts (P = .87) or between BTB autografts and soft tissue allografts (P = .36). Use of an autograft was found to be a significant predictor of having fewer reoperations within 6 years compared with using an allograft (P = .010; OR, 0.56; 95% CI, 0.36-0.87).ConclusionBTB and soft tissue autografts had a decreased risk in graft rerupture compared with BTB allografts. BTB autografts were associated with higher activity level than were BTB allografts at 6 years after revision reconstruction. Surgeons and patients should consider this information when choosing a graft for revision ACL reconstruction

    Osteoarthritis Classification Scales

    No full text
    BackgroundOsteoarthritis of the knee is commonly diagnosed and monitored with radiography. However, the reliability of radiographic classification systems for osteoarthritis and the correlation of these classifications with the actual degree of confirmed degeneration of the articular cartilage of the tibiofemoral joint have not been adequately studied.MethodsAs the Multicenter ACL (anterior cruciate ligament) Revision Study (MARS) Group, we conducted a multicenter, prospective longitudinal cohort study of patients undergoing revision surgery after anterior cruciate ligament reconstruction. We followed 632 patients who underwent radiographic evaluation of the knee (an anteroposterior weight-bearing radiograph, a posteroanterior weight-bearing radiograph made with the knee in 45° of flexion [Rosenberg radiograph], or both) and arthroscopic evaluation of the articular surfaces. Three blinded examiners independently graded radiographic findings according to six commonly used systems-the Kellgren-Lawrence, International Knee Documentation Committee, Fairbank, Brandt et al., Ahlbäck, and Jäger-Wirth classifications. Interobserver reliability was assessed with use of the intraclass correlation coefficient. The association between radiographic classification and arthroscopic findings of tibiofemoral chondral disease was assessed with use of the Spearman correlation coefficient.ResultsOverall, 45° posteroanterior flexion weight-bearing radiographs had higher interobserver reliability (intraclass correlation coefficient = 0.63; 95% confidence interval, 0.61 to 0.65) compared with anteroposterior radiographs (intraclass correlation coefficient = 0.55; 95% confidence interval, 0.53 to 0.56). Similarly, the 45° posteroanterior flexion weight-bearing radiographs had higher correlation with arthroscopic findings of chondral disease (Spearman rho = 0.36; 95% confidence interval, 0.32 to 0.39) compared with anteroposterior radiographs (Spearman rho = 0.29; 95% confidence interval, 0.26 to 0.32). With respect to standards for the magnitude of the reliability coefficient and correlation coefficient (Spearman rho), the International Knee Documentation Committee classification demonstrated the best combination of good interobserver reliability and medium correlation with arthroscopic findings.ConclusionsThe overall estimates with the six radiographic classification systems demonstrated moderate (anteroposterior radiographs) to good (45° posteroanterior flexion weight-bearing radiographs) interobserver reliability and medium correlation with arthroscopic findings. The International Knee Documentation Committee classification assessed with use of 45° posteroanterior flexion weight-bearing radiographs had the most favorable combination of reliability and correlation.Level of evidenceDiagnostic Level I. See Instructions for Authors for a complete description of levels of evidence

    Multirater Agreement of the Causes of Anterior Cruciate Ligament Reconstruction Failure

    No full text
    BackgroundAnterior cruciate ligament (ACL) reconstruction failure occurs in up to 10% of cases. Technical errors are considered the most common cause of graft failure despite the absence of validated studies. Limited data are available regarding the agreement among orthopaedic surgeons regarding the causes of primary ACL reconstruction failure and accuracy of graft tunnel placement.HypothesisExperienced knee surgeons have a high level of interobserver reliability in the agreement about the causes of primary ACL reconstruction failure, anatomic graft characteristics, and tunnel placement.Study designCohort study (diagnosis); Level of evidence, 3.MethodsTwenty cases of revision ACL reconstruction were randomly selected from the Multicenter ACL Revision Study (MARS) database. Each case included the patient's history, standardized radiographs, and a concise 30-second arthroscopic video taken at the time of revision demonstrating the graft remnant and location of the tunnel apertures. All 20 cases were reviewed by 10 MARS surgeons not involved with the primary surgery. Each surgeon completed a 2-part questionnaire dealing with each surgeon's training and practice, as well as the placement of the femoral and tibial tunnels, condition of the primary graft, and the surgeon's opinion as to the causes of graft failure. Interrater agreement was determined for each question with the kappa coefficient and the prevalence-adjusted, bias-adjusted kappa (PABAK).ResultsThe 10 reviewers have been in practice an average of 14 years and have performed at least 25 ACL reconstructions per year, and 9 were fellowship trained in sports medicine. There was wide variability in agreement among knee experts as to the specific causes of ACL graft failure. When participants were specifically asked about technical error as the cause for failure, interobserver agreement was only slight (PABAK = 0.26). There was fair overall agreement on ideal femoral tunnel placement (PABAK = 0.55) but only slight agreement on whether a femoral tunnel was too anterior (PABAK = 0.24) and fair agreement on whether it was too vertical (PABAK = 0.46). There was poor overall agreement for ideal tibial tunnel placement (PABAK = 0.17).ConclusionThis study suggests that more objective criteria are needed to accurately determine the causes of primary ACL graft failure as well as the ideal femoral and tibial tunnel placement in patients undergoing revision ACL reconstruction
    corecore