1,505 research outputs found

    Scalar Symmetries of the Hubbard Models with Variable Range Hopping

    Get PDF
    Examples of scalar conserved currents are presented for trigonometric, hyperbolic and elliptic versions of the Hubbard model with non-nearest neighbour variable range hopping. They support for the first time the hypothesis about the integrability of the elliptic version. The two- electron wave functions are constructed in an explicit form.Comment: 9 pages, LaTex2e, no figure

    Random dispersion approximation for the Hubbard model

    Full text link
    We use the Random Dispersion Approximation (RDA) to study the Mott-Hubbard transition in the Hubbard model at half band filling. The RDA becomes exact for the Hubbard model in infinite dimensions. We implement the RDA on finite chains and employ the Lanczos exact diagonalization method in real space to calculate the ground-state energy, the average double occupancy, the charge gap, the momentum distribution, and the quasi-particle weight. We find a satisfactory agreement with perturbative results in the weak- and strong-coupling limits. A straightforward extrapolation of the RDA data for L14L\leq 14 lattice results in a continuous Mott-Hubbard transition at UcWU_{\rm c}\approx W. We discuss the significance of a possible signature of a coexistence region between insulating and metallic ground states in the RDA that would correspond to the scenario of a discontinuous Mott-Hubbard transition as found in numerical investigations of the Dynamical Mean-Field Theory for the Hubbard model.Comment: 10 pages, 11 figure

    Perturbation theory for optical excitations in the one-dimensional extended Peierls--Hubbard model

    Full text link
    For the one-dimensional, extended Peierls--Hubbard model we calculate analytically the ground-state energy and the single-particle gap to second order in the Coulomb interaction for a given lattice dimerization. The comparison with numerically exact data from the Density-Matrix Renormalization Group shows that the ground-state energy is quantitatively reliable for Coulomb parameters as large as the band width. The single-particle gap can almost triple from its bare Peierls value before substantial deviations appear. For the calculation of the dominant optical excitations, we follow two approaches. In Wannier theory, we perturb the Wannier exciton states to second order. In two-step perturbation theory, similar in spirit to the GW-BSE approach, we form excitons from dressed electron-hole excitations. We find the Wannier approach to be superior to the two-step perturbation theory. For singlet excitons, Wannier theory is applicable up to Coulomb parameters as large as half band width. For triplet excitons, second-order perturbation theory quickly fails completely.Comment: 32 pages, 12 figures, submtted to JSTA

    Dynamical Mean-Field Theory - from Quantum Impurity Physics to Lattice Problems

    Full text link
    Since the first investigation of the Hubbard model in the limit of infinite dimensions by Metzner and Vollhardt, dynamical mean-field theory (DMFT) has become a very powerful tool for the investigation of lattice models of correlated electrons. In DMFT the lattice model is mapped on an effective quantum impurity model in a bath which has to be determined self-consistently. This approach lead to a significant progress in our understanding of typical correlation problems such as the Mott transition; furthermore, the combination of DMFT with ab-initio methods now allows for a realistic treatment of correlated materials. The focus of these lecture notes is on the relation between quantum impurity physics and the physics of lattice models within DMFT. Issues such as the observability of impurity quantum phase transitions in the corresponding lattice models are discussed in detail.Comment: 18 pages, 5 figures, invited paper for the Proceedings of the "3rd International Summer School on Strongly Correlated Systems, Debrecen, 2004

    Orbital-selective Mott-Hubbard transition in the two-band Hubbard model

    Full text link
    Recent advances in the field of quantum Monte Carlo simulations for impurity problems allow --within dynamical mean field theory-- for a more thorough investigation of the two-band Hubbard model with narrow/wide band and SU(2)-symmetric Hund's exchange. The nature of this transition has been controversial, and we establish that an orbital-selective Mott-Hubbard transition exists. Thereby, the wide band still shows metallic behavior after the narrow band became insulating -not a pseudogap as for an Ising Hund's exchange. The coexistence of two solutions with metallic wide band and insulating or metallic narrow band indicates, in general, first-order transitions.Comment: 4 pages, 3 figures; 2nd version as published in Phys. Rev. B (R); minor corrections, putting more emphasis on differences in spectra when comparing SU(2) and Ising Hund's exchang

    Comparison of Variational Approaches for the Exactly Solvable 1/r-Hubbard Chain

    Full text link
    We study Hartree-Fock, Gutzwiller, Baeriswyl, and combined Gutzwiller-Baeriswyl wave functions for the exactly solvable one-dimensional 1/r1/r-Hubbard model. We find that none of these variational wave functions is able to correctly reproduce the physics of the metal-to-insulator transition which occurs in the model for half-filled bands when the interaction strength equals the bandwidth. The many-particle problem to calculate the variational ground state energy for the Baeriswyl and combined Gutzwiller-Baeriswyl wave function is exactly solved for the~1/r1/r-Hubbard model. The latter wave function becomes exact both for small and large interaction strength, but it incorrectly predicts the metal-to-insulator transition to happen at infinitely strong interactions. We conclude that neither Hartree-Fock nor Jastrow-type wave functions yield reliable predictions on zero temperature phase transitions in low-dimensional, i.e., charge-spin separated systems.Comment: 23 pages + 3 figures available on request; LaTeX under REVTeX 3.

    Cluster approach study of intersite electron correlations in pyrochlore and checkerboard lattices

    Full text link
    To treat effects of electron correlations in geometrically frustrated pyrochlore and checkerboard lattices, an extended single-orbital Hubbard model with nearest neighbor hopping t\sim t and Coulomb repulsion V\sim V is applied. Infinite on-site repulsion, UU\to\infty, is assumed, thus double occupancies of sites are forbidden completely in the present study. A variational Gutzwiller type approach is extended to examine correlations due to short-range VV-interaction and a cluster approximation is developed to evaluate a variational ground state energy of the system. Obtained analytically in a special case of quarter band filling appropriate to LiV2_2O4_4, the resulting simple expression describes the ground state energy in the regime of intermediate and strong coupling VV. Like in the Brinkman-Rice theory based on the standard Gutzwiller approach to the Hubbard model, the mean value of the kinetic energy is shown to be reduced strongly as the coupling VV approaches a critical value VcV_{c}. This finding may contribute to explaining the observed heavy fermion behavior in LiV2_2O4_4

    Strong-coupling approach to the Mott--Hubbard insulator on a Bethe lattice in Dynamical Mean-Field Theory

    Full text link
    We calculate the Hubbard bands for the half-filled Hubbard model on a Bethe lattice with infinite coordination number up to and including third order in the inverse Hubbard interaction. We employ the Kato--Takahashi perturbation theory to solve the self-consistency equation of the Dynamical Mean-Field Theory analytically for the single-impurity Anderson model in multi-chain geometry. The weight of the secondary Hubbard sub-bands is of fourth order so that the two-chain geometry is sufficient for our study. Even close to the Mott--Hubbard transition, our results for the Mott--Hubbard gap agree very well with those from numerical Dynamical Density-Matrix Renormalization Group (DDMRG) calculations. The density of states of the lower Hubbard band also agrees very well with DDMRG data, apart from a resonance contribution at the upper band edge which cannot be reproduced in low-order perturbation theory.Comment: 40 pages, 7 figure

    Optical excitations of Peierls-Mott insulators with bond disorder

    Full text link
    The density-matrix renormalization group (DMRG) is employed to calculate optical properties of the half-filled Hubbard model with nearest-neighbor interactions. In order to model the optical excitations of oligoenes, a Peierls dimerization is included whose strength for the single bonds may fluctuate. Systems with up to 100 electrons are investigated, their wave functions are analyzed, and relevant length-scales for the low-lying optical excitations are identified. The presented approach provides a concise picture for the size dependence of the optical absorption in oligoenes.Comment: 12 pages, 13 figures, submitted to Phys. Rev.
    corecore