504 research outputs found

    Oriented Matroids -- Combinatorial Structures Underlying Loop Quantum Gravity

    Full text link
    We analyze combinatorial structures which play a central role in determining spectral properties of the volume operator in loop quantum gravity (LQG). These structures encode geometrical information of the embedding of arbitrary valence vertices of a graph in 3-dimensional Riemannian space, and can be represented by sign strings containing relative orientations of embedded edges. We demonstrate that these signature factors are a special representation of the general mathematical concept of an oriented matroid. Moreover, we show that oriented matroids can also be used to describe the topology (connectedness) of directed graphs. Hence the mathematical methods developed for oriented matroids can be applied to the difficult combinatorics of embedded graphs underlying the construction of LQG. As a first application we revisit the analysis of [4-5], and find that enumeration of all possible sign configurations used there is equivalent to enumerating all realizable oriented matroids of rank 3, and thus can be greatly simplified. We find that for 7-valent vertices having no coplanar triples of edge tangents, the smallest non-zero eigenvalue of the volume spectrum does not grow as one increases the maximum spin \jmax at the vertex, for any orientation of the edge tangents. This indicates that, in contrast to the area operator, considering large \jmax does not necessarily imply large volume eigenvalues. In addition we give an outlook to possible starting points for rewriting the combinatorics of LQG in terms of oriented matroids.Comment: 43 pages, 26 figures, LaTeX. Version published in CQG. Typos corrected, presentation slightly extende

    Six topics on inscribable polytopes

    Full text link
    Inscribability of polytopes is a classic subject but also a lively research area nowadays. We illustrate this with a selection of well-known results and recent developments on six particular topics related to inscribable polytopes. Along the way we collect a list of (new and old) open questions.Comment: 11 page

    Realizability of Polytopes as a Low Rank Matrix Completion Problem

    Full text link
    This article gives necessary and sufficient conditions for a relation to be the containment relation between the facets and vertices of a polytope. Also given here, are a set of matrices parameterizing the linear moduli space and another set parameterizing the projective moduli space of a combinatorial polytope

    Signatures of partition functions and their complexity reduction through the KP II equation

    Full text link
    A statistical amoeba arises from a real-valued partition function when the positivity condition for pre-exponential terms is relaxed, and families of signatures are taken into account. This notion lets us explore special types of constraints when we focus on those signatures that preserve particular properties. Specifically, we look at sums of determinantal type, and main attention is paid to a distinguished class of soliton solutions of the Kadomtsev-Petviashvili (KP) II equation. A characterization of the signatures preserving the determinantal form, as well as the signatures compatible with the KP II equation, is provided: both of them are reduced to choices of signs for columns and rows of a coefficient matrix, and they satisfy the whole KP hierarchy. Interpretations in term of information-theoretic properties, geometric characteristics, and the relation with tropical limits are discussed.Comment: 42 pages, 11 figures. Section 7.1 has been added, the organization of the paper has been change

    Intersecting Solitons, Amoeba and Tropical Geometry

    Full text link
    We study generic intersection (or web) of vortices with instantons inside, which is a 1/4 BPS state in the Higgs phase of five-dimensional N=1 supersymmetric U(Nc) gauge theory on R_t \times (C^\ast)^2 \simeq R^{2,1} \times T^2 with Nf=Nc Higgs scalars in the fundamental representation. In the case of the Abelian-Higgs model (Nf=Nc=1), the intersecting vortex sheets can be beautifully understood in a mathematical framework of amoeba and tropical geometry, and we propose a dictionary relating solitons and gauge theory to amoeba and tropical geometry. A projective shape of vortex sheets is described by the amoeba. Vortex charge density is uniformly distributed among vortex sheets, and negative contribution to instanton charge density is understood as the complex Monge-Ampere measure with respect to a plurisubharmonic function on (C^\ast)^2. The Wilson loops in T^2 are related with derivatives of the Ronkin function. The general form of the Kahler potential and the asymptotic metric of the moduli space of a vortex loop are obtained as a by-product. Our discussion works generally in non-Abelian gauge theories, which suggests a non-Abelian generalization of the amoeba and tropical geometry.Comment: 39 pages, 11 figure

    A Novel, Robust Quantum Detection Scheme

    Get PDF
    Protocols used in quantum information and precision spectroscopy rely on efficient internal quantum state discrimination. With a single ion in a linear Paul trap, we implement a novel detection method which utilizes correlations between two detection events with an intermediate spin-flip. The technique is experimentally characterized as more robust against fluctuations in detection laser power compared to conventionally implemented methods. Furthermore, systematic detection errors which limit the Rabi oscillation contrast in conventional methods are overcome

    A Single Laser System for Ground-State Cooling of 25-Mg+

    Full text link
    We present a single solid-state laser system to cool, coherently manipulate and detect 25^{25}Mg+^+ ions. Coherent manipulation is accomplished by coupling two hyperfine ground state levels using a pair of far-detuned Raman laser beams. Resonant light for Doppler cooling and detection is derived from the same laser source by means of an electro-optic modulator, generating a sideband which is resonant with the atomic transition. We demonstrate ground-state cooling of one of the vibrational modes of the ion in the trap using resolved-sideband cooling. The cooling performance is studied and discussed by observing the temporal evolution of Raman-stimulated sideband transitions. The setup is a major simplification over existing state-of-the-art systems, typically involving up to three separate laser sources
    corecore