2,067 research outputs found

    Detectability of atmospheric features of Earth-like planets in the habitable zone around M dwarfs

    Get PDF
    We investigate the detectability of atmospheric spectral features of Earth-like planets in the habitable zone (HZ) around M dwarfs with the future James Webb Space Telescope (JWST). We use a coupled 1D climate-chemistry-model to simulate the influence of a range of observed and modelled M-dwarf spectra on Earth-like planets. The simulated atmospheres served as input for the calculation of the transmission spectra of the hypothetical planets, using a line-by-line spectral radiative transfer model. To investigate the spectroscopic detectability of absorption bands with JWST we further developed a signal-to-noise ratio (S/N) model and applied it to our transmission spectra. High abundances of CH4_4 and H2_2O in the atmosphere of Earth-like planets around mid to late M dwarfs increase the detectability of the corresponding spectral features compared to early M-dwarf planets. Increased temperatures in the middle atmosphere of mid- to late-type M-dwarf planets expand the atmosphere and further increase the detectability of absorption bands. To detect CH4_4, H2_2O, and CO2_2 in the atmosphere of an Earth-like planet around a mid to late M dwarf observing only one transit with JWST could be enough up to a distance of 4 pc and less than ten transits up to a distance of 10 pc. As a consequence of saturation limits of JWST and less pronounced absorption bands, the detection of spectral features of hypothetical Earth-like planets around most early M dwarfs would require more than ten transits. We identify 276 existing M dwarfs (including GJ 1132, TRAPPIST-1, GJ 1214, and LHS 1140) around which atmospheric absorption features of hypothetical Earth-like planets could be detected by co-adding just a few transits. We show that using transmission spectroscopy, JWST could provide enough precision to be able to partly characterise the atmosphere of Earth-like TESS planets around mid to late M dwarfs.Comment: 18 pages, 10 figure

    Very high-energy γ-ray observations of the Crab nebula and other potential sources with the GRAAL experiment

    Get PDF
    The “γ-ray astronomy at Almeria” (GRAAL) experiment uses 63 heliostat-mirrors with a total mirror area of ≈2500 m2 from the CESA-1 field at the “Plataforma Solar de Almeria” to collect Cherenkov light from air showers. The detector is located in a central solar tower and detects photon-induced showers with an energy threshold of 250±110 GeV and an asymptotic effective detection area of about 15 000 m2. A comparison between the results of detailed Monte-Carlo simulations and data is presented. Data sets taken in the period September 1999–September 2000 in the direction of the Crab pulsar, the active galaxy 3C 454.3, the unidentified γ-ray source 3EG J1835+59 and a “pseudosource” were analyzed for high energy γ-ray emission. Evidence for a γ-ray flux from the Crab pulsar with an integral flux of 2.2±0.4 above threshold and a significance of 4.5σ in a total measuring time of 7 h and 10 min on source was found. No evidence for emission from the other sources was found. Some difficulties with the use of heliostat fields for γ-ray astronomy are pointed out. In particular the effect of field-of-view restricted to the central part of a detected air shower on the lateral distribution and timing properties of Cherenkov light are discussed. Upon restriction the spread of the timing front of proton-induced showers sharply decreases and the reconstructed direction becomes biased towards the pointing direction. This is shown to make efficient γ-hadron separation difficult

    An Exact Algorithm for TSP in Degree-3 Graphs via Circuit Procedure and Amortization on Connectivity Structure

    Full text link
    The paper presents an O^*(1.2312^n)-time and polynomial-space algorithm for the traveling salesman problem in an n-vertex graph with maximum degree 3. This improves the previous time bounds of O^*(1.251^n) by Iwama and Nakashima and O^*(1.260^n) by Eppstein. Our algorithm is a simple branch-and-search algorithm. The only branch rule is designed on a cut-circuit structure of a graph induced by unprocessed edges. To improve a time bound by a simple analysis on measure and conquer, we introduce an amortization scheme over the cut-circuit structure by defining the measure of an instance to be the sum of not only weights of vertices but also weights of connected components of the induced graph.Comment: 24 pages and 4 figure

    The GRAAL Project

    Get PDF
    26th International Cosmic Ray Conference Salt Lake City, Utah August 17-25,1999The GRAAL Project (Gamma Ray Astronomy at ALmeria) makes use of the CESA-1 heliostat field at the “Plataforma Solar de Almeria” (Spain) as a gamma-ray telescope with an energy threshold of about 100 GeV. Cherenkov light generated by EAS is reflected by the heliostats and collected into photomultipliers (PMTs) with nonimaging secondary optics. Each PMT collects the light reflected by 13 - 18 heliostats of 40 m2 using a Winston cone. After successful tests with two collecting cones, a more advanced setup on a dedicated platform, using four collectors and 63 heliostats (total reflecting area of about 2500 m2 ) is being installed. A description of this setup together with Monte Carlo results about its excellent capabilities in the precise determination of pulse arrival times are presented

    Análise e melhoria de processo do Serviço de Atendimento ao Cidadão (SAC) da Embrapa Florestas.

    Get PDF
    bitstream/CNPF-2009-09/42630/1/Doc156.pdf1 CD-RO

    Nitrogen use of a mixed tree crop plantation with a leguminous cover crop.

    Get PDF
    Study on two associated frut tree crops take up their N in comparison to a leguminous cover crop in an agroforestry system. Preliminar results showed the pueraria had the highest foliar N content followed by pupunha; cupuacu having less than the other two. One year after application, cupuacu took up more of the applied N in comparison to the total N uptake than pueraria and pupunha as seen from the high &15N values. The amount of 15N taken up in relation to dry matter equaled between the three species, since pueraria had a lot higher N contents. The other sampling dates showed the same tendency.bitstream/item/181065/1/ID-2600-2-45-52.pd

    Dark septate endophytes and arbuscular mycorrhizal fungi (Paris‐morphotype) affect the stable isotope composition of 'classically' non-mycorrhizal plants

    Get PDF
    The vast majority of terrestrial plants exchange nutrients with fungal partners forming different mycorrhizal types. The minority of plants considered as non-mycorrhizal, however, are not necessarily free of any fungi, but are frequently colonized by elusive fungal endophytes, such as dark septate endophytes (DSE) or fine root endophytes (FRE). While a functional role of FRE in improvement of nutrient gain was recently elucidated, the function of DSE is still in discussion and was here addressed for 36 plant species belonging to the families Equisetaceae, Cypereaceae and Caryophyllaceae. Molecular and microscopic staining approaches were conducted to verify the presence of DSE in the investigated species. Stable isotope natural abundances of the elements carbon, nitrogen, hydrogen and oxygen and total nitrogen concentrations were analyzed for the respective species of the target plant families and accompanying mycorrhizal and non-mycorrhizal (Brassicaceae) plant species. Staining approaches confirmed the presence of DSE in all investigated species within the families Equisetaceae, Cyperaceae and Caryophyllaceae. A co-colonization with Paris-type arbuscular mycorrhiza (AM) was occasionally found by staining and molecular approaches in species of the Equisetaceae. Species of the Equisetaceae, Cyperaceae and Caryophyllaceae were significantly 15N-enriched in comparison to accompanying plants. In addition, a significant 13C and 2H enrichment and increased total nitrogen concentrations were found for representatives of the Equisetaceae. The 15N-enrichment found here for representatives of Equisetaceae, Cyperaceae and Caryophyllaceae provides evidence for a functional role of the ubiquitous DSE fungi. DSE fungi obviously provide access to 15N-enriched soil organic compounds probably in exchange for organic carbon compounds from plant photosynthesis. As indicated by additional 13C- and 2H-enrichments, representatives of the Equisetaceae apparently gain simultaneously organic carbon compounds from their AM fungi of the Paris-morphotype. Thus, species of the Equisetaceae have to be considered as partially, or in case of the achlorophyllous fertile Equisetum arvense, as fully mycoheterotrophic at least in some stages of their life cycle. So far mostly underappreciated fungi classified as DSE are suggested to occupy an ecologically relevant role similar to mycorrhizae and the occurrence of simultaneous functions of DSE and AM fungi in Equisetaceae is proposed

    Hijacking the mustard-oil bomb: How a glucosinolate-sequestering flea beetle copes with plant myrosinases

    Get PDF
    Myrosinase enzymes play a key role in the chemical defense of plants of the order Brassicales. Upon herbivory, myrosinases hydrolyze the β-S-linked glucose moiety of glucosinolates, the characteristic secondary metabolites of brassicaceous plants, which leads to the formation of different toxic hydrolysis products. The specialist flea beetle, Phyllotreta armoraciae, is capable of accumulating high levels of glucosinolates in the body and can thus at least partially avoid plant myrosinase activity. In feeding experiments with the myrosinase-deficient Arabidopsis thaliana tgg1 × tgg2 (tgg) mutant and the corresponding Arabidopsis Col-0 wild type, we investigated the influence of plant myrosinase activity on the metabolic fate of ingested glucosinolates in adult P. armoraciae beetles. Arabidopsis myrosinases hydrolyzed a fraction of ingested glucosinolates and thereby reduced the glucosinolate sequestration rate by up to 50% in adult beetles. These results show that P. armoraciae cannot fully prevent glucosinolate hydrolysis; however, the exposure of adult beetles to glucosinolate hydrolysis products had no impact on the beetle’s energy budget under our experimental conditions. To understand how P. armoraciae can partially prevent glucosinolate hydrolysis, we analyzed the short-term fate of ingested glucosinolates and found them to be rapidly absorbed from the gut. In addition, we determined the fate of ingested Arabidopsis myrosinase enzymes in P. armoraciae. Although we detected Arabidopsis myrosinase protein in the feces, we found only traces of myrosinase activity, suggesting that P. armoraciae can inactivate plant myrosinases in the gut. Based on our findings, we propose that the ability to tolerate plant myrosinase activity and a fast glucosinolate uptake mechanism represent key adaptations of P. armoraciae to their brassicaceous host plants
    corecore