3,973 research outputs found
Not All Saturated 3-Forests Are Tight
A basic statement in graph theory is that every inclusion-maximal forest is
connected, i.e. a tree. Using a definiton for higher dimensional forests by
Graham and Lovasz and the connectivity-related notion of tightness for
hypergraphs introduced by Arocha, Bracho and Neumann-Lara in, we provide an
example of a saturated, i.e. inclusion-maximal 3-forest that is not tight. This
resolves an open problem posed by Strausz
Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF
Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) assists in understanding of the mechanisms involved. Thus the reliability of predicting in-space durability of materials based on ground laboratory testing should be improved. A computational model which simulates atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of an assumed mechanistic behavior of atomic oxygen interaction based on in-space atomic oxygen erosion of unprotected polymers and ground laboratory atomic oxygen interaction with protected polymers, prediction of atomic oxygen interaction with protected polymers on LDEF was accomplished. However, the results of these predictions are not consistent with the observed LDEF results at defect sites in protected polymers. Improved agreement between observed LDEF results and predicted Monte Carlo modeling can be achieved by modifying of the atomic oxygen interactive assumptions used in the model. LDEF atomic oxygen undercutting results, modeling assumptions, and implications are presented
An Exact Algorithm for TSP in Degree-3 Graphs via Circuit Procedure and Amortization on Connectivity Structure
The paper presents an O^*(1.2312^n)-time and polynomial-space algorithm for
the traveling salesman problem in an n-vertex graph with maximum degree 3. This
improves the previous time bounds of O^*(1.251^n) by Iwama and Nakashima and
O^*(1.260^n) by Eppstein. Our algorithm is a simple branch-and-search
algorithm. The only branch rule is designed on a cut-circuit structure of a
graph induced by unprocessed edges. To improve a time bound by a simple
analysis on measure and conquer, we introduce an amortization scheme over the
cut-circuit structure by defining the measure of an instance to be the sum of
not only weights of vertices but also weights of connected components of the
induced graph.Comment: 24 pages and 4 figure
A Quantum Lovasz Local Lemma
The Lovasz Local Lemma (LLL) is a powerful tool in probability theory to show
the existence of combinatorial objects meeting a prescribed collection of
"weakly dependent" criteria. We show that the LLL extends to a much more
general geometric setting, where events are replaced with subspaces and
probability is replaced with relative dimension, which allows to lower bound
the dimension of the intersection of vector spaces under certain independence
conditions. Our result immediately applies to the k-QSAT problem: For instance
we show that any collection of rank 1 projectors with the property that each
qubit appears in at most of them, has a joint satisfiable
state.
We then apply our results to the recently studied model of random k-QSAT.
Recent works have shown that the satisfiable region extends up to a density of
1 in the large k limit, where the density is the ratio of projectors to qubits.
Using a hybrid approach building on work by Laumann et al. we greatly extend
the known satisfiable region for random k-QSAT to a density of
. Since our tool allows us to show the existence of joint
satisfying states without the need to construct them, we are able to penetrate
into regions where the satisfying states are conjectured to be entangled,
avoiding the need to construct them, which has limited previous approaches to
product states.Comment: 19 page
Detectability of atmospheric features of Earth-like planets in the habitable zone around M dwarfs
We investigate the detectability of atmospheric spectral features of
Earth-like planets in the habitable zone (HZ) around M dwarfs with the future
James Webb Space Telescope (JWST). We use a coupled 1D climate-chemistry-model
to simulate the influence of a range of observed and modelled M-dwarf spectra
on Earth-like planets. The simulated atmospheres served as input for the
calculation of the transmission spectra of the hypothetical planets, using a
line-by-line spectral radiative transfer model. To investigate the
spectroscopic detectability of absorption bands with JWST we further developed
a signal-to-noise ratio (S/N) model and applied it to our transmission spectra.
High abundances of CH and HO in the atmosphere of Earth-like planets
around mid to late M dwarfs increase the detectability of the corresponding
spectral features compared to early M-dwarf planets. Increased temperatures in
the middle atmosphere of mid- to late-type M-dwarf planets expand the
atmosphere and further increase the detectability of absorption bands. To
detect CH, HO, and CO in the atmosphere of an Earth-like planet
around a mid to late M dwarf observing only one transit with JWST could be
enough up to a distance of 4 pc and less than ten transits up to a distance of
10 pc. As a consequence of saturation limits of JWST and less pronounced
absorption bands, the detection of spectral features of hypothetical Earth-like
planets around most early M dwarfs would require more than ten transits. We
identify 276 existing M dwarfs (including GJ 1132, TRAPPIST-1, GJ 1214, and LHS
1140) around which atmospheric absorption features of hypothetical Earth-like
planets could be detected by co-adding just a few transits. We show that using
transmission spectroscopy, JWST could provide enough precision to be able to
partly characterise the atmosphere of Earth-like TESS planets around mid to
late M dwarfs.Comment: 18 pages, 10 figure
The extrasolar planet Gliese 581 d: a potentially habitable planet? (Corrigendum to arXiv:1009.5814)
We report here that the equation for H2O Rayleigh scattering was incorrectly
stated in the original paper [arXiv:1009.5814]. Instead of a quadratic
dependence on refractivity r, we accidentally quoted an r^4 dependence. Since
the correct form of the equation was implemented into the model, scientific
results are not affected.Comment: accepted to Astronomy&Astrophysic
The use of plasma ashers and Monte Carlo modeling for the projection of atomic oxygen durability of protected polymers in low Earth orbit
The results of ground laboratory and in-space exposure of polymeric materials to atomic oxygen has enabled the development of a Monte Carlo computational model which simulates the oxidation processes of both environments. The cost effective projection of long-term low-Earth-orbital durability of protected polymeric materials such as SiO(x)-coated polyimide Kapton photovoltaic array blankets will require ground-based testing to assure power system reliability. Although silicon dioxide thin film protective coatings can greatly extend the useful life of polymeric materials in ground-based testing, the projection of in-space durability based on these results can be made more reliable through the use of modeling which simulates the mechanistic properties of atomic oxygen interaction, and replicates test results in both environments. Techniques to project long-term performance of protected materials, such as the Space Station Freedom solar array blankets, are developed based on ground laboratory experiments, in-space experiments, and computational modeling
Current in open quantum systems
We show that a dissipative current component is present in the dynamics
generated by a Liouville-master equation, in addition to the usual component
associated with Hamiltonian evolution. The dissipative component originates
from coarse graining in time, implicit in a master equation, and needs to be
included to preserve current continuity. We derive an explicit expression for
the dissipative current in the context of the Markov approximation. Finally, we
illustrate our approach with a simple numerical example, in which a quantum
particle is coupled to a harmonic phonon bath and dissipation is described by
the Pauli master equation.Comment: To appear in Phys. Rev. Let
- …
