80 research outputs found

    A Field Technique Measuring Virus Decay and Potential Aerosol Hazard from Wastewater Sprinkler Irrigation

    Get PDF
    The increased use of domestic wastewater for irrigation purposes has stimulated a growing practice of sprinkler irrigating from oxidation ponds and other domestic wastewaters. Aerosols generated from these sprinkler irrigation systems may contain potentially hazardous pathogens. Subsequently, the aerosols can contain infective viruses which can be carried through the air to surrounding populations. Thus, a public health hazard can be created by sprinkler irrigating domestic wastewater. This study is an investigation of a means by which the virus decay rate of viruses in aerosols and the potentials hazard of sprinkler irrigation aerosol clouds may be examined. A means of injection of a human and animal virus stimulant, MS-2 bacteriophage, is described. In addition, the factors which are known to effect the survival of viruses in aerosols are discussed. The ambient air factors that are known to effect virus survival and which are discussed include relative humidity, air temperature, solar radiation, and aerosol age. The suspending fluid factors that are known to effect virus survival and which are discussed include dissolved inorganic salt contact, dissolved organic content, filterable solids and pH. The decay rate of the aerosolized MS-2 was measured with an all-glass impinger (AGI-30) when the wind velocity and distance of the sampler from the sprinkler system, and the initial and final concentrations of aerosolized MS-2 virus were known. The aerosol hazard of a domestic wastewater sprinkler irrigation system is defined in terms of the likelihood of infective aerosol particles to be inhaled and penetrate the human lung. Thus, the aerosol hazard is a function of aerosol particle size. The aerosol particle size distribution of the infective aerosol cloud was measured wit the Andersen sampler. A high and homogeneous concentration of the virus in the wastewater was insured by using pressure differentials in the sprinkler irrigation delivery line. By injecting the MS-2 virus into the line at a constant rate along with a tracer, Bacillus subtilus var niger (Bacillus globigii) spores, the decay rate of the virus during airborne exposure to environmental factors could be determined. The decay rate was determined assuming the environmental factors had no affect on the concentration of the tracer. It was proposed that the environmental engineer, after knowing the virus decay rates under varying environmental conditions, can define buffer zones which would be required around sprinkler irrigation sites. The buffer zone would reduce the possibility of contaminating humans by prohibiting access. The usefulness of the filed technique was demonstrated and the MS-2 was found to undergo a 33.3 percent decay per minute in the dark (no solar radiation) at 33 percent relative humidity, 70.6 percent dissolved organic material, 29.4 percent dissolved inorganic salts, 30.1 mg/1 filterable solids, and 17 degree C air temperature. The aerosol cloud resulting from the spray irrigation process appeared potentially hazardous because the Andersen sampler collected 84.2 percent of the virus infective droplets in the size range that could be inhaled

    Review paper: Evaluation of Techniques for Algae Removal from Wastewater Stabilization Ponds

    Get PDF
    Introduction: Approximately 90 percent of the wastewater lagoons in the United States are located in small communities of 5,000 people or less. These communities, many with an average daily wastewater flow of only 175,000 - 200,000 gallons, do not have the resources to keep man at the lagoon sites throughout the day (38). A high degree of technical knowhow is usually lacking in these communities. Often only periodic inspection or maintenance is carried out by the general municipal work force. Therefore, the development of a relatively inexpensive method that does not require sophisticated and constant operation or extensive maintenance is needed to polish these effluents. Most regulatory agencies are adopting more stringent water quality standards, enforcement of which will necessitate changes in present treatment methods and the philosophy of wastewater treatment. Small communities utilizing stabilization ponds will be affected most drastically by new standards. Because most communities utilizing ponds are relatively small and installed ponds primariliy to avoid operating costs, it is unlikely that modifications requiring significant increases in operation will be acceptable. Therefore, the most sophisticated alternatives for upgrading treatment must be excluded from a practicable solution to solids removal from stabilization pond effluent

    Imprints of Nuclear Symmetry Energy on Properties of Neutron Stars

    Full text link
    Significant progress has been made in recent years in constraining the density dependence of nuclear symmetry energy using terrestrial nuclear laboratory data. Around and below the nuclear matter saturation density, the experimental constraints start to merge in a relatively narrow region. At supra-saturation densities, there are, however, still large uncertainties. After summarizing the latest experimental constraints on the density dependence of nuclear symmetry energy, we highlight a few recent studies examining imprints of nuclear symmetry energy on the binding energy, energy release during hadron-quark phase transitions as well as the ww-mode frequency and damping time of gravitational wave emission of neutron stars.Comment: 10 pages. Invited talk given in the Nuclear Astrophysics session of INPC2010, July 4-9, 2010, Vancouver, Canada; Journal of Physics: Conference Series (2011

    Gravitational waves from single neutron stars: an advanced detector era survey

    Full text link
    With the doors beginning to swing open on the new gravitational wave astronomy, this review provides an up-to-date survey of the most important physical mechanisms that could lead to emission of potentially detectable gravitational radiation from isolated and accreting neutron stars. In particular we discuss the gravitational wave-driven instability and asteroseismology formalism of the f- and r-modes, the different ways that a neutron star could form and sustain a non-axisymmetric quadrupolar "mountain" deformation, the excitation of oscillations during magnetar flares and the possible gravitational wave signature of pulsar glitches. We focus on progress made in the recent years in each topic, make a fresh assessment of the gravitational wave detectability of each mechanism and, finally, highlight key problems and desiderata for future work.Comment: 39 pages, 12 figures, 2 tables. Chapter of the book "Physics and Astrophysics of Neutron Stars", NewCompStar COST Action 1304. Minor corrections to match published versio

    Collecting Comet Samples by ER-2 Aircraft: Cosmic Dust Collection During the Draconid Meteor Shower in October 2012

    Get PDF
    Many tons of dust grains, including samples of asteroids and comets, fall from space into the Earth's atmosphere each day. NASA periodically collects some of these particles from the Earth's stratosphere using sticky collectors mounted on NASA's high-flying aircraft. Sometimes, especially when the Earth experiences a known meteor shower, a special opportunity is presented to associate cosmic dust particles with a known source. NASA JSC's Cosmic Dust Collection Program has made special attempts to collect dust from particular meteor showers and asteroid families when flights can be planned well in advance. However, it has rarely been possible to make collections on very short notice. In 2012, the Draconid meteor shower presented that opportunity. The Draconid meteor shower, originating from Comet 21P/Giacobini-Zinner, has produced both outbursts and storms several times during the last century, but the 2012 event was not predicted to be much of a show. Because of these predictions, the Cosmic Dust team had not targeted a stratospheric collection effort for the Draconids, despite the fact that they have one of the slowest atmospheric entry velocities (23 km/s) of any comet shower, and thus offer significant possibilities of successful dust capture. However, radar measurements obtained by the Canadian Meteor Orbit Radar during the 2012 Draconids shower indicated a meteor storm did occur October 8 with a peak at 16:38 (+/-5 min) UTC for a total duration of approximately 2 hours

    ROSE Process Offers Energy Savings for Solvent Extraction

    No full text
    Kerr-McGee has developed and commercialized an energy-efficient solvent extraction process known as ROSE (Residuum Oil Supercritical Extraction) in which the extraction solvent is recovered as a supercritical fluid. The energy requirement for supercritical solvent recovery is substantially lower than for conventional solvent processes using evaporation, compression and condensation. The ROSE technology is applicable to a wide variety of both organic and inorganic solvents. Energy savings of forty to fifty percent have been demonstrated commercially with ROSE compared to traditional solvent recovery. The dollar value of the savings is related to the solvent-to-feed ratio employed in the process and the cost of steam, fuel and electricity. Kerr-McGee has a bench scale pilot plant available for feedstock evaluation. Four commercial ROSE units and a large pilot plant have been placed into operation during the past five years. Two additional units are under construction and others are in various stages of design. This paper describes the ROSE process and illustrates its flexibility with respect to the types of feedstocks and variety of solvents which are utilized
    • …
    corecore