4 research outputs found

    Identifying the origins of local atmospheric deposition in the steel industry basin of Luxembourg using the chemical and isotopic composition of the lichen Xanthoria parietina

    Get PDF
    Trace metal atmospheric contamination was assessed in one of the oldest European industrial sites of steel production situated in the southern part of the Grand-Duchy of Luxembourg. Using elemental ratios as well as Pb, Sr, and Nd isotopic compositions as tracers, we found preliminary results concerning the trace metal enrichment and the chemical/isotopic signatures of the most important emission sources using the lichen Xanthoria parietina sampled at 15 sites along a SW-NE transect. The concentrations of these elements decreased with increasing distance from the historical and actual steel-work areas. The combination of the different tracers (major elements, Rare Earth Element ratios, Pb, Sr and Nd isotopes) enabled us to distinguish between three principal sources: the historical steel production (old tailings corresponding to blast-furnace residues), the present steel production (industrial sites with arc electric furnace units) and the regional background (baseline) components. Other anthropogenic sources including a waste incinerator and major roads had only weak impacts on lichen chemistry and isotopic ratios. The correlation between the Sr and Nd isotope ratios indicated that the Sr–Nd isotope systems represented useful tools to trace atmospheric emissions of factories using scrap metal for steel production

    Hydrogen and copper isotope analysis of turquoise by SIMS: Calibration and matrix effects

    No full text
    The hydrogen isotope system is used extensively to provide information on the genesis of minerals (e.g., source of fluids and mechanisms of precipitation). The copper isotopic system is less well understood, but has the potential to provide valuable insight on mineral precipitation, particularly supergene Cu-rich minerals. Here we present a rapid and precise method for measuring hydrogen and copper isotopes in semi-precious gem-quality turquoise (Cu(Al,Fe3 +)6(PO4)4(OH)8 · 4H2O ) by secondary ion mass spectrometry (SIMS). The suitability of standards for instrumental mass fractionation (IMF) calibration was assessed by external precision of SIMS measurements for each standard (2-4‰ for δDIMF and 0.2-0.4‰ for δ65CuIMF). IMF in turquoise was correlated with H and Fe contents for D/H measurements and Fe content for 65Cu/63Cu measurements. Based on these correlations, IMF can be corrected to enable δD and δ65Cu analyses by SIMS with accuracies of ± 5‰ and ± 0.5‰, respectively. The precision and accuracy of SIMS thus rivals those of other mass spectrometric methods for H and Cu isotopes and demonstrates the potential of SIMS applications in identifying gemstones provenance and understanding the genesis of turquoise deposits
    corecore