6 research outputs found

    Improving the “Active Heading Control Platform” (CHAD) for Active Experiment Pointing During Stratospheric Balloon Flights

    Get PDF
    Payloads carried into the stratosphere using weather balloons typically spin and sway during ascent, limiting the types of experiments that can be performed. This project aimed to improve the functionality and performance of the Arduino-controlled active anti-rotation camera platform called CHAD (Controlled Heading Automation Device) that was reported upon at AHAC 2016 by Andrew Kruger from Wilbur Wright College in Chicago. The CHAD device senses its orientation using a magnetometer and an inertial measurement unit, then counters rotation by turning its main shaft with a stepper motor so as to hold fixed the absolute heading of the attached experiment (such as a video camera). The goals of this project were to make CHAD more low-temperature tolerant, to add the capability to adjust the heading in flight by radio command, and to add on-board logging of sensor data, stepper motor commands, actual orientation (independent from what the stepper motor was told to do), and all radio communications. This log was valuable for post-flight analysis if the unit did not hold its heading as effectively as desired. Some thermal issues were identified and addressed. The stepper motor was found to be powerful enough to control the heading of a full video-telemetry system, not just a bare video camera. The implementation of an in-flight-reset command proved valuable. A shaft-rotation encoder was added to assist in knowing orientation independently from the stepper motor commands. Although significant progress has been made, in-flight performance of the modified CHAD device remains somewhat inconsistent in stratospheric conditions

    University of Minnesota – Twin Cities Modifications to the Montana State University Telemetry System for Stratospheric Eclipse Ballooning

    Get PDF
    On August 21, 2017, the path of totality of a solar eclipse swept across the continental United States from Oregon to South Carolina. Our team, flying weather balloons near Grand Island, Nebraska, was able to live stream the shadow of the moon from the stratosphere to the ground. The team was able to track our balloons with high accuracy due to new payload software and hardware implemented on the still image telemetry platform developed by the Montana Space Grant. In addition, the modified system allowed the team to relay commands and receive information from individual payloads attached to our balloons, giving live telemetry and control from a new GUI-based ground station control application. Although the eclipse is now over, the system will still be a powerful and useful tool for the University of Minnesota stratospheric ballooning team. The platform could be used for any other application needing real-time, ground-based communication to various payloads on a balloon gondola

    Eclipse-Ballooning 2017: The U of MN – Twin Cities Experience

    Get PDF
    The stratospheric ballooning team at the U of MN – Twin Cities started working on eclipse-ballooning in the fall of 2013, even before the Montana Space Grant announced their plan to organize a national Eclipse Ballooning Project. Our team promptly signed up to assist their effort, and have been heavily involved ever since. This presentation will discuss our eclipse-ballooning efforts and progress over the past 4 years. Our experiences include experimenting with a GoPro-based video-telemetry system (which ultimately was not as successful as Montana’s Raspberry-Pi-based system), adopting (then helping test, modify, and teach other teams to learn to use) the Montana telemetry system, practicing with up-range and down-range ground station placement, developing and testing passive anti-rotation devices and active camera-pointing devices to improve video quality, landing two eclipse-telemetry systems in Minnesota lakes one week before the eclipse (ouch!), flying five balloon stacks during the eclipse from near Grand Island, NE, and organizing/hosting AHAC 2017. We will also discuss ways in which we have already begun to use the telemetry equipment for non-eclipse balloon missions. The eclipse project has greatly expanded our HAB network and ballooning capabilities in multiple different directions, and will continue to strongly influence our stratospheric ballooning program for years to come

    Improving the “Active Heading Control Platform” (CHAD) for Active Experiment Pointing During Stratospheric Balloon Flights

    Get PDF
    Payloads carried into the stratosphere using weather balloons typically spin and sway during ascent, limiting the types of experiments that can be performed. This project aimed to improve the functionality and performance of the Arduino-controlled active anti-rotation camera platform called CHAD (Controlled Heading Automation Device) that was reported upon at AHAC 2016 by Andrew Kruger from Wilbur Wright College in Chicago. The CHAD device senses its orientation using a magnetometer and an inertial measurement unit, then counters rotation by turning its main shaft with a stepper motor so as to hold fixed the absolute heading of the attached experiment (such as a video camera). The goals of this project were to make CHAD more low-temperature tolerant, to add the capability to adjust the heading in flight by radio command, and to add on-board logging of sensor data, stepper motor commands, actual orientation (independent from what the stepper motor was told to do), and all radio communications. This log was valuable for post-flight analysis if the unit did not hold its heading as effectively as desired. Some thermal issues were identified and addressed. The stepper motor was found to be powerful enough to control the heading of a full video-telemetry system, not just a bare video camera. The implementation of an in-flight-reset command proved valuable. A shaft-rotation encoder was added to assist in knowing orientation independently from the stepper motor commands. Although significant progress has been made, in-flight performance of the modified CHAD device remains somewhat inconsistent in stratospheric conditions

    University of Minnesota – Twin Cities Modifications to the Montana State University Telemetry System for Stratospheric Eclipse Ballooning

    Get PDF
    On August 21, 2017, the path of totality of a solar eclipse swept across the continental United States from Oregon to South Carolina. Our team, flying weather balloons near Grand Island, Nebraska, was able to live stream the shadow of the moon from the stratosphere to the ground. The team was able to track our balloons with high accuracy due to new payload software and hardware implemented on the still image telemetry platform developed by the Montana Space Grant. In addition, the modified system allowed the team to relay commands and receive information from individual payloads attached to our balloons, giving live telemetry and control from a new GUI-based ground station control application. Although the eclipse is now over, the system will still be a powerful and useful tool for the University of Minnesota stratospheric ballooning team. The platform could be used for any other application needing real-time, ground-based communication to various payloads on a balloon gondola

    Eclipse-Ballooning 2017: The U of MN – Twin Cities Experience

    Get PDF
    The stratospheric ballooning team at the U of MN – Twin Cities started working on eclipse-ballooning in the fall of 2013, even before the Montana Space Grant announced their plan to organize a national Eclipse Ballooning Project. Our team promptly signed up to assist their effort, and have been heavily involved ever since. This presentation will discuss our eclipse-ballooning efforts and progress over the past 4 years. Our experiences include experimenting with a GoPro-based video-telemetry system (which ultimately was not as successful as Montana’s Raspberry-Pi-based system), adopting (then helping test, modify, and teach other teams to learn to use) the Montana telemetry system, practicing with up-range and down-range ground station placement, developing and testing passive anti-rotation devices and active camera-pointing devices to improve video quality, landing two eclipse-telemetry systems in Minnesota lakes one week before the eclipse (ouch!), flying five balloon stacks during the eclipse from near Grand Island, NE, and organizing/hosting AHAC 2017. We will also discuss ways in which we have already begun to use the telemetry equipment for non-eclipse balloon missions. The eclipse project has greatly expanded our HAB network and ballooning capabilities in multiple different directions, and will continue to strongly influence our stratospheric ballooning program for years to come
    corecore