18,785 research outputs found
Effects of turbulent dust grain motion to interstellar chemistry
Theoretical studies have revealed that dust grains are usually moving fast
through the turbulent interstellar gas, which could have significant effects
upon interstellar chemistry by modifying grain accretion. This effect is
investigated in this work on the basis of numerical gas-grain chemical
modeling. Major features of the grain motion effect in the typical environment
of dark clouds (DC) can be summarised as follows: 1) decrease of gas-phase
(both neutral and ionic) abundances and increase of surface abundances by up to
2-3 orders of magnitude; 2) shifts of the existing chemical jumps to earlier
evolution ages for gas-phase species and to later ages for surface species by
factors of about ten; 3) a few exceptional cases in which some species turn out
to be insensitive to this effect and some other species can show opposite
behaviors too. These effects usually begin to emerge from a typical DC model
age of about 10^5 yr. The grain motion in a typical cold neutral medium (CNM)
can help overcome the Coulomb repulsive barrier to enable effective accretion
of cations onto positively charged grains. As a result, the grain motion
greatly enhances the abundances of some gas-phase and surface species by
factors up to 2-6 or more orders of magnitude in the CNM model. The grain
motion effect in a typical molecular cloud (MC) is intermediate between that of
the DC and CNM models, but with weaker strength. The grain motion is found to
be important to consider in chemical simulations of typical interstellar
medium.Comment: 20 pages, 10 figures and 2 table
Chiral structures of lander molecules on Cu(100)
Supramolecular assemblies of lander molecules (CH) on Cu(100)
are investigated with low-temperature scanning tunneling microscopy. The
energetically most favourable conformation of the adsorbed molecule is found to
exist in two mirror symmetric enantiomers or conformers. At low coverage, the
molecules align in enantiomerically pure chains along the chiral directions
and . The arrangement is proposed to be
mainly governed by intermolecular van-der-Waals interaction. At higher
coverages, the molecular chains arrange into chiral domains, for which a
structural model is presented.Comment: to appear in Nanotechnology vol. 15 (2004
Estimating Risks of Inapparent Avian Exposure for Human Infection: Avian Influenza Virus A (H7N9) in Zhejiang Province, China
published_or_final_versio
Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant
We compute the dimensionality dependence of for charged black branes
with Gauss-Bonnet correction. We find that both causality and stability
constrain the value of Gauss-Bonnet coupling constant to be bounded by 1/4 in
the infinite dimensionality limit. We further show that higher dimensionality
stabilize the gravitational perturbation. The stabilization of the perturbation
in higher dimensional space-time is a straightforward consequence of the
Gauss-Bonnet coupling constant bound.Comment: 16 pages,3 figures+3 tables,typos corrected, published versio
Holographic fermions in charged Gauss-Bonnet black hole
We study the properties of the Green's functions of the fermions in charged
Gauss-Bonnet black hole. What we want to do is to investigate how the presence
of Gauss-Bonnet coupling constant affects the dispersion relation,
which is a characteristic of Fermi or non-Fermi liquid, as well as what
properties such a system has, for instance, the Particle-hole (a)symmetry. One
important result of this research is that we find for , the behavior of
this system is different from that of the Landau Fermi liquid and so the system
can be candidates for holographic dual of generalized non-Fermi liquids. More
importantly, the behavior of this system increasingly similar to that of the
Landau Fermi liquid when is approaching its lower bound. Also we find
that this system possesses the Particle-hole asymmetry when , another
important characteristic of this system. In addition, we also investigate
briefly the cases of the charge dependence.Comment: 22 pages, 6 figures; version published in JHE
Recommended from our members
Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V
LiCoO2 is a dominant cathode material for lithium-ion (Li-ion) batteries due to its high volumetric energy density, which could potentially be further improved by charging to high voltages. However, practical adoption of high-voltage charging is hindered by LiCoO2’s structural instability at the deeply delithiated state and the associated safety concerns. Here, we achieve stable cycling of LiCoO2 at 4.6 V (versus Li/Li+) through trace Ti–Mg–Al co-doping. Using state-of-the-art synchrotron X-ray imaging and spectroscopic techniques, we report the incorporation of Mg and Al into the LiCoO2 lattice, which inhibits the undesired phase transition at voltages above 4.5 V. We also show that, even in trace amounts, Ti segregates significantly at grain boundaries and on the surface, modifying the microstructure of the particles while stabilizing the surface oxygen at high voltages. These dopants contribute through different mechanisms and synergistically promote the cycle stability of LiCoO2 at 4.6 V
Superconducting microfabricated ion traps
We fabricate superconducting ion traps with niobium and niobium nitride and
trap single 88Sr ions at cryogenic temperatures. The superconducting transition
is verified and characterized by measuring the resistance and critical current
using a 4-wire measurement on the trap structure, and observing change in the
rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz
at 6 K and shows no significant change across the superconducting transition,
suggesting that anomalous heating is primarily caused by noise sources on the
surface. This demonstration of superconducting ion traps opens up possibilities
for integrating trapped ions and molecular ions with superconducting devices.Comment: 3 pages, 2 figure
- …