17,526 research outputs found

    Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant

    Full text link
    We compute the dimensionality dependence of η/s\eta/s for charged black branes with Gauss-Bonnet correction. We find that both causality and stability constrain the value of Gauss-Bonnet coupling constant to be bounded by 1/4 in the infinite dimensionality limit. We further show that higher dimensionality stabilize the gravitational perturbation. The stabilization of the perturbation in higher dimensional space-time is a straightforward consequence of the Gauss-Bonnet coupling constant bound.Comment: 16 pages,3 figures+3 tables,typos corrected, published versio

    Coverage analysis of heterogeneous cellular networks in urban areas

    Full text link
    © 2016 IEEE. In this article, a network model incorporating both line-of-sight (LOS) and non-line-of-sight (NLOS) transmissions is proposed to investigate impacts of blockages in urban areas on heterogeneous network coverage performance. Results show that co-existence of NLOS and LOS transmissions has a significant impact on network performance. We find in urban areas, that deploying more BSs in different tiers is better than merely deploying all BSs in the same tier in terms of coverage probability

    Strong genetic differentiation of the East-Himalayan Megacodon stylophorus (Gentianaceae) detected by Inter-Simple Sequence Repeats (ISSR)

    Get PDF
    Megacodon stylophorus (Clarke) Smith is a perennial alpine herb endemic to the species-rich eastern Himalayan region. Its populations are locally scattered as isolated patches throughout this region. Genetic variation within and among six populations of this species was assessed using ISSR fingerprinting with 13 primers. High levels of genetic diversity exist within species (P = 69.83%, HT = 0.1949 and Hsp = 0.3047), while the within-population diversity is low (P = 11.21%, HE = 0.0532 and Hpop = 0.0792). Extraordinarily high levels of genetic differentiation were detected among populations based on various statistics, including Nei's genetic diversity analysis (72.7%), Shannon's diversity index (74.01%) and AMOVA (80.70%). That is, populations shared low levels of genetic identity (I = 0.8203 ± 0.0430). This genetic structure was probably due to severe genetic drift of the small-sized patchy populations resulting from postglacial habitat fragmentations. The observed genetic structure of the populations implies that as many populations as possible should be considered for any in situ and ex situ conservation practice on this specie

    Ligation of protease-activated receptor 1 enhances alpha(v)beta(6) integrin-dependent TGF-beta activation and promotes acute lung injury

    Get PDF
    Activation of latent TGF-beta by the alpha(v)beta(6) integrin is a critical step in the development of acute lung injury. However, the mechanism by which a alpha(v)beta(6)-mediated TGF-beta activation is regulated has not been identified. We show that thrombin, and other agonists of protease-activated receptor 1(PAR1), activate TGF-beta in an alpha(v)beta(6) integrin-specific manner. This effect is PART specific and is mediated by RhoA and Rho kinase. Intratracheal instillation of the PART-specific peptide TFLLRN increases lung edema during high-tidal-volume ventilation, and this effect is completely inhibited by a blocking antibody against the alpha(v)beta(6) integrin. Instillation of TFLLRN during high-tidal-volume ventilation is associated with increased pulmonary TGF-beta activation; however, this is not observed in Itgb6(-/-) mice. Furthermore, Itgb6(-/-) mice are also protected from ventilator-induced lung edema. We also demonstrate that pulmonary edema and TGF-beta activity are similarly reduced in Par1(-/-) mice following bleomycin-induced lung injury. These results suggest that PART-mediated enhancement of a alpha(v)beta(6)-dependent TGF-beta activation could be one mechanism by which activation of the coagulation cascade contributes to the development of acute lung injury, and they identify PART and the alpha(v)beta(6) integrin as potential therapeutic targets in this condition

    Energy efficiency of small cell backhaul networks based on Gauss-Markov mobile models

    Full text link
    © The Institution of Engineering and Technology 2015. To satisfy the recent growth of mobile data usage, small cells are recommended to deploy into conventional cellular networks. However, the massive backhaul traffic is a troublesome problem for small cell networks, especial in wireless backhaul transmission links. In this study, backhaul traffic models are first presented considering the Gauss-Markov mobile models of mobile stations in small cell networks. Furthermore, an energy efficiency model of small cell backhaul networks with Gauss-Markov mobile models has been proposed. Numerical results indicate that the energy efficiency of small cell backhaul networks can be optimised by trade-off the number and radius of small cells in cellular networks

    Network coding based wireless broadcast with performance guarantee

    Full text link
    © 2014 IEEE. Wireless broadcast has been increasingly used to deliver information of common interest to a large number of users. There are two major challenges in wireless broadcast: the unreliable nature of wireless links and the difficulty of acknowledging the correct reception of every broadcast packet by every user when the number of users becomes large. In this paper, by resorting to stochastic geometry analysis, we develop a network coding based broadcast scheme that allows a base station (BS) to broadcast a given number of packets to a large number of users, without user acknowledgment, while being able to provide a performance guarantee on the probability of successful delivery. Further, the BS only has limited statistical information about the environment including the spatial distribution of users (instead of their exact locations and number) and the wireless propagation model. Performance analysis is conducted. On that basis, an upper and a lower bound on the number of packet transmissions required to meet the performance guarantee are obtained. Simulations are conducted to validate the accuracy of the theoretical analysis. The technique and analysis developed in this paper are useful for designing efficient and reliable wireless broadcast strategies

    Vehicular Communications for 5G Cooperative Small-Cell Networks

    Full text link
    © 1967-2012 IEEE. Cooperative transmission is an effective approach for vehicular communications to improve wireless transmission capacity and reliability in fifth-generation (5G) small-cell networks. Based on distances between the vehicle and cooperative small-cell base stations (BSs), the cooperative probability and the coverage probability have been derived for 5G cooperative small-cell networks where small-cell BSs follow Poisson point process distributions. Furthermore, the vehicular handoff rate and the vehicular overhead ratio have been proposed to evaluate the vehicular mobility performance in 5G cooperative small-cell networks. To balance the vehicular communication capacity and the vehicular handoff ratio, an optimal vehicular overhead ratio can be achieved by adjusting the cooperative threshold of 5G cooperative small-cell networks
    corecore