72 research outputs found

    Coprinus leucostictus rediscovered after a century, epitypified, and its generic position in Hausknechtia resolved by multigene phylogenetic analysis of Psathyrellaceae

    Get PDF
    About a century after the first finding in northern Vietnam (1908), Coprinus leucostictus is rediscovered on 12 localities in southern India and southern to southeastern China, growing in evergreen subtropical or tropical forests. It is morphologically a rather unique species with coprinoid basidiomata, strongly branched and diverticulate veil hyphae, and a hymeniderm pileipellis. The BLAST search of ITS and tef-1a sequences showed its close relationship to Hausknechtia floriformis, which is not clear based on morphological characters. Multigene phylogenetic analysis of a concatenated dataset of ITS, LSU, tef-1a, and -tubulin sequences, revealed C. leucostictus and H. floriformis as separate, but sister species. Molecular phylogenetic relationships within the family Psathyrellaceae (including 17 genera) are presented in the phylogram. The genera Hausknechtia and Candolleomyces formed two well-supported lineages and were recovered as a monophyletic group. A total of 27 sequences from the genus Hausknechtia were newly generated in this study. Coprinus leucostictus is combined as Hausknechtia leucosticta, its epitype is designated, and the hitherto monotypic genus Hausknechtia is emended. A detailed morphological description of H. leucosticta supplemented with colour photographs and line drawings is provided

    Overview to the Hard X-ray Modulation Telescope (Insight-HXMT) Satellite

    Full text link
    As China's first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band (1-250 keV) slat-collimator-based X-ray astronomy satellite with the capability of all-sky monitoring in 0.2-3 MeV. It was designed to perform pointing, scanning and gamma-ray burst (GRB) observations and, based on the Direct Demodulation Method (DDM), the image of the scanned sky region can be reconstructed. Here we give an overview of the mission and its progresses, including payload, core sciences, ground calibration/facility, ground segment, data archive, software, in-orbit performance, calibration, background model, observations and some preliminary results.Comment: 29 pages, 40 figures, 6 tables, to appear in Sci. China-Phys. Mech. Astron. arXiv admin note: text overlap with arXiv:1910.0443

    ERK5 MAP Kinase Regulates Neurogenin1 during Cortical Neurogenesis

    Get PDF
    The commitment of multi-potent cortical progenitors to a neuronal fate depends on the transient induction of the basic-helix-loop-helix (bHLH) family of transcription factors including Neurogenin 1 (Neurog1). Previous studies have focused on mechanisms that control the expression of these proteins while little is known about whether their pro-neural activities can be regulated by kinase signaling pathways. Using primary cultures and ex vivo slice cultures, here we report that both the transcriptional and pro-neural activities of Neurog1 are regulated by extracellular signal-regulated kinase (ERK) 5 signaling in cortical progenitors. Activation of ERK5 potentiated, while blocking ERK5 inhibited Neurog1-induced neurogenesis. Furthermore, endogenous ERK5 activity was required for Neurog1-initiated transcription. Interestingly, ERK5 activation was sufficient to induce Neurog1 phosphorylation and ERK5 directly phosphorylated Neurog1 in vitro. We identified S179/S208 as putative ERK5 phosphorylation sites in Neurog1. Mutations of S179/S208 to alanines inhibited the transcriptional and pro-neural activities of Neurog1. Our data identify ERK5 phosphorylation of Neurog1 as a novel mechanism regulating neuronal fate commitment of cortical progenitors

    The large area detector onboard the eXTP mission

    Get PDF
    The Large Area Detector (LAD) is the high-throughput, spectral-timing instrument onboard the eXTP mission, a flagship mission of the Chinese Academy of Sciences and the China National Space Administration, with a large European participation coordinated by Italy and Spain. The eXTP mission is currently performing its phase B study, with a target launch at the end-2027. The eXTP scientific payload includes four instruments (SFA, PFA, LAD and WFM) offering unprecedented simultaneous wide-band X-ray timing and polarimetry sensitivity. The LAD instrument is based on the design originally proposed for the LOFT mission. It envisages a deployed 3.2 m2 effective area in the 2-30 keV energy range, achieved through the technology of the large-area Silicon Drift Detectors - offering a spectral resolution of up to 200 eV FWHM at 6 keV - and of capillary plate collimators - limiting the field of view to about 1 degree. In this paper we will provide an overview of the LAD instrument design, its current status of development and anticipated performance
    • …
    corecore