58 research outputs found

    The relationship between childhood trauma and Internet gaming disorder among college students: A structural equation model

    Get PDF
    open access journalBackground The aim of this study was to investigate the mechanisms of Internet gaming disorder (IGD) and the associated interaction effects of childhood trauma, depression and anxiety in college students. Methods Participants were enrolled full-time as freshmen at a University in the Hunan province, China. All participants reported their socio-demographic characteristics and undertook a standardized assessment on childhood trauma, anxiety, depression and IGD. The effect of childhood trauma on university students' internet gaming behaviour mediated by anxiety and depression was analysed using structural equation modelling (SEM) using R 3.6.1. Results In total, 922 freshmen participated in the study, with an approximately even male-to-female ratio. A mediation model with anxiety and depression as the mediators between childhood trauma and internet gaming behaviour allowing anxiety and depression to be correlated was tested using SEM. The SEM analysis revealed that a standardised total effect of childhood trauma on Internet gaming was 0.18, (Z = 5.60, 95% CI [0.02, 0.05], P < 0.001), with the direct effects of childhood trauma on Internet gaming being 0.11 (Z = 3.41, 95% CI [0.01, 0.03], P = 0.001), and the indirect effects being 0.02 (Z = 2.32, 95% CI [0.00, 0.01], P = 0.020) in the pathway of childhood trauma-depression-internet gaming; and 0.05 (Z = 3.67, 95% CI [0.00, 0.02], P < 0.001) in the pathway of childhood trauma-anxiety-Internet gaming. In addition, the two mediators anxiety and depression were significantly correlated (r = 0.50, Z = 13.54, 95% CI [3.50, 5.05], P < 0.001). Conclusions The study revealed that childhood trauma had a significant impact on adolescents' Internet gaming behaviours among college students. Anxiety and depression both significantly mediated the relationship between childhood trauma and internet gaming and augmented its negative influence. Discussion of the need to understand the subtypes of childhood traumatic experience in relationship to addictive behaviours is included

    Improved Sliding Mode-Active Disturbance Rejection Control of Electromagnetic Linear Actuator for Direct-Drive System

    No full text
    The electromagnetic linear actuator is used as the core drive unit to achieve high precision and high response in the direct-drive actuation system. In order to improve the response performance and control accuracy of the linear drive unit, an improved sliding mode-active disturbance rejection control (ISM-ADRC) method was proposed. A motor model was established based on improved LuGre dynamic friction. The position loop adopts the improved integral traditional sliding mode control based on an extended state observer, and the current loop adopts PI control. The stability of the system is verified based on the Lyapunov theory. A nonlinear dilated state observer is used to effectively observe the electromagnetic linear actuator position and velocity information while estimating and compensating the internal and external uncertainty perturbations. At the same time, the saturation function sat(s) is used to replace the sign(s) and introduce the power function of the displacement error variable. The improved integral sliding mode control law further improves the response speed and control accuracy of the controller while reducing the jitter inherent in the conventional sliding mode. Simulation and experimental data show that the proposed improved sliding mode-active disturbance rejection control reduces the 8-mm step response time of the electromagnetic linear actuator by 21.9% and the steady-state error by less than 0.01 mm compared with the conventional sliding-mode control, while the system has 49.4% less adjustment time for abrupt load changes and is more robust to different loads and noise

    Analysis of leakage flux, losses, and temperature in large synchronous generator end zone under the multi‐layer screen thickness based on novel iterative method

    No full text
    Abstract The multi‐layer screen is the key component in the large synchronous generator end zone. The leakage flux, losses, and temperature of end components are significantly affected by the thickness of multi‐layer screen in the synchronous generator. To investigate the influence of multi‐layer screen thickness on the end leakage flux, losses, and temperature in the synchronous generator end zone, 1407MVA nuclear power synchronous generator is studied. Three‐dimensional transient electromagnetic field model of synchronous generator end zone is established. Three‐dimensional transient electromagnetic field in the end zone of 1407MVA synchronous generator with the multi‐layer screen is calculated based on the novel iterative method. The flux density of end components is compared and studied in the end zone under the variation of multi‐layer screen thickness. Influence of the different thicknesses of multi‐layer screen on the losses of the shield plate, screen, finger plate, and stator end core is researched. The losses of end components obtained from 3D end electromagnetic field calculation are applied to the end zone as the heat source in the three‐dimensional fluid and thermal coupled field. The temperature distribution of the end components is determined. The accuracy of the calculated results is validated by the experimental values

    Regulatory Mechanisms of <i>ArAux</i>/<i>IAA13</i> and <i>ArAux</i>/<i>IAA16</i> in the Rooting Process of <i>Acer rubrum</i>

    No full text
    Acer rubrum is difficult to root during cutting propagation. Auxin/indole-acetic acids (Aux/IAA) proteins, which are encoded by the early response genes of auxin, are transcriptional repressors that play important roles in auxin-mediated root growth and development. In this study, ArAux/IAA13 and ArAux/IAA16, which were significantly differentially expressed after 300 mg/L indole butyric acid treatment, were cloned. Heatmap analysis revealed that they might be associated with the process of adventitious root (AR) growth and development mediated by auxin. Subcellular localization analysis showed that they performed their function in the nucleus. Bimolecular fluorescence complementation assays revealed the interactions between them and two auxin response factor (ARF) proteins, ArARF10 and ArARF18, confirming their relevance to AR growth and development. Overexpression of transgenic plants confirmed that the overexpression of ArAux/IAA13 and ArAux/IAA16 inhibited AR development. These results help elucidate the mechanisms of auxin-mediated AR growth and development during the propagation of A. rubrum and provide a molecular basis for the rooting of cuttings

    Mangiferin reduces uric acid via regulation of amino acid and lipid metabolism

    No full text
    Mangiferin, a functional compound extracted from edible plants, has been shown to exhibit favorable uric acid-lowering properties. However, the underlying molecular mechanisms still require further investigation. In this study, we utilized a rat model of hyperuricemia to assess the hypouricemic effect of mangiferin and explore its potential mechanism based on UHPLC-Q-Exactive Orbitrap mass spectrometry. Untargeted metabolomics analysis revealed 19 differential metabolites significantly altered in serum of hyperuricemic rats through principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA), which were primarily related to amino acid metabolism and lipid metabolism. Among these differential metabolites, the levels of alpha-methylstyrene, indan-1-ol, and 4-D-hydroxysphinganine significantly increased, while the levels of L-leucine, 2-phenylacetamide, hippuric acid, benzoic acid, isoquinoline, phenylpyruvate, glycerone phosphate, N, N-diethylphenylacetamide and corticosterone significantly decreased in model rats. After mangiferin intervention, 14 metabolites were reversed through modulation of metabolic pathways. Our findings suggest that mangiferin may serve as a useful potential adjuvant in reducing uric acid effects

    Role of <i>SaPCR2</i> in Zn Uptake in the Root Elongation Zone of the Zn/Cd Hyperaccumulator <i>Sedum alfredii</i>

    No full text
    Zn pollution is a potential toxicant for agriculture and the environment. Sedum alfredii is a Zn/Cd hyperaccumulator found in China and has been proven as a useful resource for the phytoremediation of Zn-contaminated sites. However, the molecular mechanism of Zn uptake in S. alfredii is limited. In this study, the function of SaPCR2 on Zn uptake in S. alfredii was identified by gene expression analysis, yeast function assays, Zn accumulation and root morphology analysis in transgenic lines to further elucidate the mechanisms of uptake and translocation of Zn in S. alfredii. The results showed that SaPCR2 was highly expressed in the root elongation zone of the hyperaccumulating ecotype (HE) S. alfredii, and high Zn exposure downregulated the expression of SaPCR2 in the HE S. alfredii root. The heterologous expression of SaPCR2 in yeast suggested that SaPCR2 was responsible for Zn influx. The overexpression of SaPCR2 in the non-hyperaccumulating ecotype (NHE) S. alfredii significantly increased the root uptake of Zn, but did not influence Mn, Cu or Fe. SR-μ-XRF technology showed that more Zn was distributed in the vascular buddle tissues, as well as in the cortex and epidermis in the transgenic lines. Root morphology was also altered after SaPCR2 overexpression, and a severe inhibition was observed. In the transgenic lines, the meristematic and elongation zones of the root were lower compared to the WT, and Zn accumulation in meristem cells was also reduced. These results indicate that SaPCR2 is responsible for Zn uptake, and mainly functions in the root elongation zone. This research on SaPCR2 could provide a theoretical basis for the use of genetic engineering technology in the modification of crops for their safe production and biological enhancement

    Advances of manganese-oxides-based catalysts for indoor formaldehyde removal

    No full text
    Formaldehyde (HCHO) has been identified as one of the most common indoor pollutions nowadays. Manganese oxides (MnOx) are considered to be a promising catalytic material used in indoor HCHO oxidation removal due to their high catalytic activity, low-cost, and environmentally friendly. In this paper, the progress in developing MnOx-based catalysts for HCHO removal is comprehensively reviewed for exploring the mechanisms of catalytic oxidation and catalytic deactivation. The catalytic oxidation mechanisms based on three typical theory models (Mars-van-Krevelen, Eley-Rideal and Langmuir–Hinshelwood) are discussed and summarized. Furthermore, the research status of catalytic deactivation, catalysts’ regeneration and integrated application of MnOx-based catalysts for indoor HCHO removal are detailed in the review. Finally, the technical challenges in developing MnOx-based catalysts for indoor HCHO removal are analyzed and the possible research direction is also proposed for overcoming the challenges toward practical application of such catalysts

    Genome-Wide Identification, Characterization, and Expression Analysis of <i>SPIRAL1</i> Family Genes in Legume Species

    No full text
    The SPIRAL1 (SPR1) gene family encodes microtubule-associated proteins that are essential for the anisotropic growth of plant cells and abiotic stress resistance. Currently, little is known about the characteristics and roles of the gene family outside of Arabidopsis thaliana. This study intended to investigate the SPR1 gene family in legumes. In contrast to that of A. thaliana, the gene family has undergone shrinking in the model legume species Medicago truncatula and Glycine max. While the orthologues of SPR1 were lost, very few SPR1-Like (SP1L) genes were identified given the genome size of the two species. Specifically, the M. truncatula and G. max genomes only harbor two MtSP1L and eight GmSP1L genes, respectively. Multiple sequence alignment showed that all these members contain conserved N- and C-terminal regions. Phylogenetic analysis clustered the legume SP1L proteins into three clades. The SP1L genes showed similar exon-intron organizations and similar architectures in their conserved motifs. Many essential cis-elements are present in the promoter regions of the MtSP1L and GmSP1L genes associated with growth and development, plant hormones, light, and stress. The expression analysis revealed that clade 1 and clade 2 SP1L genes have relatively high expression in all tested tissues in Medicago and soybean, suggesting their function in plant growth and development. MtSP1L-2, as well as clade 1 and clade 2 GmSP1L genes, display a light-dependent expression pattern. The SP1L genes in clade 2 (MtSP1L-2, GmSP1L-3, and GmSP1L-4) were significantly induced by sodium chloride treatment, suggesting a potential role in the salt-stress response. Our research provides essential information for the functional studies of SP1L genes in legume species in the future
    corecore