12 research outputs found

    Magnetic nature of wolframite MgReO4_4

    Get PDF
    Rhenium oxides belonging to the family AAReO4_4 where AA is a metal cation, exhibit interesting electronic and magnetic properties. In this study we have utilized the muon spin rotation/relaxation (μ+\mu^+SR) technique to study the magnetic properties of the MgReO4_4 compound. To the best of our knowledge, this is the first investigation reported on this interesting material, that is stabilized in a wolframite crystal structure using a special high-pressure synthesis technique. Bulk magnetic studies show the onset of an antiferromagnetic (AF) long range order, or a possible singlet spin state at TC190T_{\rm C1}\approx90~K, with a subtle second high-temperature transition at TC2280T_{\rm C2}\approx280~K. Both transitions are also confirmed by heat capacity (CpC_p) measurements. From our μ+\mu^+SR measurements, it is clear that the sample enters an AF order below TC1=TN85T_{\rm C1}=T_{\rm N}\approx85~K. We find no evidence of magnetic signal above TNT_{\rm N}, which indicates that TC2T_{\rm C2} is likely linked to a structural transition. Further, via sensitive zero field (ZF) μ+\mu^+SR measurements we find evidence of a spin reorientation at TCant65T_{\rm Cant}\approx65~K. This points towards a transition from a collinear AF into a canted AF order at low temperature, which is proposed to be driven by competing magnetic interactions

    ESCRT‐dependent vacuolar sorting and degradation of the auxin biosynthetic enzyme YUC1 flavin monooxygenase

    No full text
    YUC flavin monooxygenases catalyze the rate-limiting step of auxin biosynthesis. Here we report the vacuolar targeting and degradation of GFP-YUC1. GFP-YUC1 fusion expressed in Arabidopsis protoplasts or transgenic plants was primarily localized in vacuoles. Surprisingly, we established that GFP-YUC1, a soluble protein, was sorted to vacuoles through the ESCRT pathway, which has long been recognized for sorting and targeting integral membrane proteins. We further show that GFP-YUC1 was ubiquitinated and in this form GFP-YUC1 was targeted for degradation, a process that was also stimulated by elevated auxin levels. Our findings revealed a molecular mechanism of GFP-YUC1 degradation and demonstrate that the ESCRT pathway can recognize both soluble and integral membrane proteins as cargoes

    High-sensitivity troponin T release profile in off-pump coronary artery bypass grafting patients with normal postoperative course

    No full text
    Abstract Background The aim of the study was to investigate the high-sensitivity troponin T (hs-TnT) release profile in off-pump coronary artery bypass grafting (OPCABG) patients with normal postoperative course. Methods From January 2015 to October 2016, 398 consecutive OPCABG patients who had normal postoperative courses were enrolled. Blood samples for hs-TnT were collected at several time points and the comparisons among different time points grouped by various factors were further analyzed. Results There were 317 male and 81 female patients, with a median age of 64. For 66.1% of the patients, peak hs-TnT occurred at the 24th hour after OPCABG, regardless of the groups divided by different factors. In total, the hs-TnT values were much higher in male group (P = 0.035), in patients who need 5 or more bypass grafts (P = 0.035) and in patients with high-risk EuroSCORE II assessment (P = 0.013). However, we failed to find any significant differences between different age groups (P = 0.129) or among different coronary heart disease classifications (P = 0.191). Conclusions The hs-TnT values were affected by various factors and culminated around the first 24 h following OPCABG. It may provide some useful information for future clinical studies of myocardial biomarkers after OPCABG

    PINOID Is Required for Formation of the Stigma and Style in Rice

    No full text
    The stigma is the entry point for sexual reproduction in plants, but the mechanisms underlying stigma development are largely unknown. Here, we disrupted putative auxin biosynthetic and signaling genes to evaluate their roles in rice (Oryza sativa) development. Disruption of the rice PINOID (OsPID) gene completely eliminated the development of stigmas, and overexpression of OsPID led to overproliferation of stigmas, suggesting that OsPID is a key determinant for stigma development. Interestingly, ospid mutants did not display defects in flower initiation, nor did they develop any pin-like inflorescences, a characteristic phenotype observed in pid mutants in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). We constructed double mutants of OsPID and its closest homolog, OsPIDb, yet the double mutants still did not develop any pin-like inflorescences, indicating that either ospid is compensated by additional homologous genes or OsPID has different functions in rice compared with PID in other organisms. We then knocked out one of the NAKED PINS IN YUC MUTANTS (NPY) genes, which cause the formation of pin-like inflorescences in Arabidopsis when compromised, in the ospid background. The ospid osnpy2 double mutants developed pin-like inflorescences, which were phenotypically similar to pid mutants in Arabidopsis and maize, demonstrating that the roles of OsPID in inflorescence development are likely masked by redundant partners. This work identified a key determinant for stigma development in rice and revealed a complex picture of the PID gene in rice development. Furthermore, the stigma-less ospid mutants are potentially useful in producing hybrid rice

    Role of Arabidopsis INDOLE-3-ACETIC ACID CARBOXYL METHYLTRANSFERASE 1 in auxin metabolism

    No full text
    The phytohormone auxin regulates a wide range of developmental processes in plants. Indole-3-acetic acid (IAA) is the main auxin that moves in a polar manner and forms concentration gradients, whereas phenylacetic acid (PAA), another natural auxin, does not exhibit polar movement. Although these auxins occur widely in plants, the differences between IAA and PAA metabolism remain largely unknown. In this study, we investigated the role of Arabidopsis IAA CARBOXYL METHYLTRANSFERASE 1 (IAMT1) in IAA and PAA metabolism. IAMT1 proteins expressed in Escherichia coli could convert both IAA and PAA to their respective methyl esters. Overexpression of IAMT1 caused severe auxin-deficient phenotypes and reduced the levels of IAA, but not PAA, in the root tips of Arabidopsis, suggesting that IAMT1 exclusively metabolizes IAA in vivo. We generated iamt1 null mutants via CRISPR/Cas9-mediated genome editing and found that the single knockout mutants had normal auxin levels and did not exhibit visibly altered phenotypes. These results suggest that other proteins, namely the IAMT1 homologs in the SABATH family of carboxyl methyltransferases, may also regulate IAA levels in Arabidopsis

    The main oxidative inactivation pathway of the plant hormone auxin.

    No full text
    Inactivation of the phytohormone auxin plays important roles in plant development, and several enzymes have been implicated in auxin inactivation. In this study, we show that the predominant natural auxin, indole-3-acetic acid (IAA), is mainly inactivated via the GH3-ILR1-DAO pathway. IAA is first converted to IAA-amino acid conjugates by GH3 IAA-amidosynthetases. The IAA-amino acid conjugates IAA-aspartate (IAA-Asp) and IAA-glutamate (IAA-Glu) are storage forms of IAA and can be converted back to IAA by ILR1/ILL amidohydrolases. We further show that DAO1 dioxygenase irreversibly oxidizes IAA-Asp and IAA-Glu into 2-oxindole-3-acetic acid-aspartate (oxIAA-Asp) and oxIAA-Glu, which are subsequently hydrolyzed by ILR1 to release inactive oxIAA. This work established a complete pathway for the oxidative inactivation of auxin and defines the roles played by auxin homeostasis in plant development

    PIEZO ion channel is required for root mechanotransduction in Arabidopsis thaliana

    No full text
    Plant roots adapt to the mechanical constraints of the soil to grow and absorb water and nutrients. As in animal species, mechanosensitive ion channels in plants are proposed to transduce external mechanical forces into biological signals. However, the identity of these plant root ion channels remains unknown. Here, we show that Arabidopsis thaliana PIEZO1 (PZO1) has preserved the function of its animal relatives and acts as an ion channel. We present evidence that plant PIEZO1 is expressed in the columella and lateral root cap cells of the root tip, which are known to experience robust mechanical strain during root growth. Deleting PZO1 from the whole plant significantly reduced the ability of its roots to penetrate denser barriers compared to wild-type plants. pzo1 mutant root tips exhibited diminished calcium transients in response to mechanical stimulation, supporting a role of PZO1 in root mechanotransduction. Finally, a chimeric PZO1 channel that includes the C-terminal half of PZO1 containing the putative pore region was functional and mechanosensitive when expressed in naive mammalian cells. Collectively, our data suggest that Arabidopsis PIEZO1 plays an important role in root mechanotransduction and establish PIEZOs as physiologically relevant mechanosensitive ion channels across animal and plant kingdoms
    corecore