26 research outputs found

    Shared computational principles for language processing in humans and deep language models

    Get PDF
    Departing from traditional linguistic models, advances in deep learning have resulted in a new type of predictive (autoregressive) deep language models (DLMs). Using a self-supervised next-word prediction task, these models generate appropriate linguistic responses in a given context. In the current study, nine participants listened to a 30-min podcast while their brain responses were recorded using electrocorticography (ECoG). We provide empirical evidence that the human brain and autoregressive DLMs share three fundamental computational principles as they process the same natural narrative: (1) both are engaged in continuous next-word prediction before word onset; (2) both match their pre-onset predictions to the incoming word to calculate post-onset surprise; (3) both rely on contextual embeddings to represent words in natural contexts. Together, our findings suggest that autoregressive DLMs provide a new and biologically feasible computational framework for studying the neural basis of language

    Gradients and Modulation of K+ Channels Optimize Temporal Accuracy in Networks of Auditory Neurons

    Get PDF
    Accurate timing of action potentials is required for neurons in auditory brainstem nuclei to encode the frequency and phase of incoming sound stimuli. Many such neurons express “high threshold” Kv3-family channels that are required for firing at high rates (>∼200 Hz). Kv3 channels are expressed in gradients along the medial-lateral tonotopic axis of the nuclei. Numerical simulations of auditory brainstem neurons were used to calculate the input-output relations of ensembles of 1–50 neurons, stimulated at rates between 100–1500 Hz. Individual neurons with different levels of potassium currents differ in their ability to follow specific rates of stimulation but all perform poorly when the stimulus rate is greater than the maximal firing rate of the neurons. The temporal accuracy of the combined synaptic output of an ensemble is, however, enhanced by the presence of gradients in Kv3 channel levels over that measured when neurons express uniform levels of channels. Surprisingly, at high rates of stimulation, temporal accuracy is also enhanced by the occurrence of random spontaneous activity, such as is normally observed in the absence of sound stimulation. For any pattern of stimulation, however, greatest accuracy is observed when, in the presence of spontaneous activity, the levels of potassium conductance in all of the neurons is adjusted to that found in the subset of neurons that respond better than their neighbors. This optimization of response by adjusting the K+ conductance occurs for stimulus patterns containing either single and or multiple frequencies in the phase-locking range. The findings suggest that gradients of channel expression are required for normal auditory processing and that changes in levels of potassium currents across the nuclei, by mechanisms such as protein phosphorylation and rapid changes in channel synthesis, adapt the nuclei to the ongoing auditory environment

    Assessment of Ionic Interferences to Nitrate and Potassium Analyses with Ion-Selective Electrodes

    No full text
    Ion-selective electrodes (ISEs) are simple tools used for rapid measurement of nitrate nitrogen (NO3-N) and potassium (K) concentrations in plant sap. With the development of best management practices (BMPs), interest exists in using ISEs for soil leachate and soil and fertilizer solutions. Nitrate N and K concentrations in the 0 to 10,000 mg L–1 ISE working range were measured in diluted solutions of common salts to assess ionic interference of calcium (Ca2+), ammonium (NH4+), chloride (Cl–), and sulfate (SO42–). The effects of meter (replication) were unexpectedly significant in one out of three ranges for NO3-N and K (P values of 0.50, 0.72, and 0.01 for NO3-N and 0.99, 0.01, and 0.74 for K, for the 0–100, 100–1,000 and 1,000–10,000 mg L–1 ranges, respectively). The responses of calculated NO3-N and K concentrations to measured NO3-N and K concentrations were linear, but slopes ranged from 0.85 to 1.54, from 0.24 to 2.72, and from 0.93 to 5.48 for NO3-N and from 0.80 to 1.01, from 0.71 to 1.39, and from 0.93 to 2.21 for K for the 0–100, 100–1,000, and 1,000–10,000 mg L–1 measuring ranges, respectively. All slopes were significantly different from zero, and several were significantly different from each other and the 1:1 line. Pairwise slope comparisons conducted with covariance analysis showed that SO42– alone interfered with NO3-N measurements at concentrations ranging from 34 to 171 mg L–1, which was less than the manufacturer’s information, and by its presence in combination with K+, NH4+, Ca2+, and Cl– within the medium and high concentration ranges. Potassium measurements were not subject to interference from the ions tested for all three concentration ranges. These results highlight the importance of using quality assurance / quality control (QA/QC) samples in the set of unknown samples to detect inacceptable departure from linearity in routine analysis. The increase in measurement variability from one range to the next showed the importance of keeping measurements within a single concentration range by using dilutions. Hence, ISEs may be used for field measurements of NO3-N and K concentrations in soil leachate as well as soil and nutrient solutions and are therefore a practical BMP tool. However, ISEs should not be used as substitutes for the laboratory methods when official measurements are needed

    Kv3.3 Channels Bind Hax-1 and Arp2/3 to Assemble a Stable Local Actin Network that Regulates Channel Gating

    No full text
    Mutations in the Kv3.3 potassium channel (KCNC3) cause cerebellar neurodegeneration and impair auditory processing. The cytoplasmic C terminus of Kv3.3 contains a proline-rich domain conserved in proteins that activate actin nucleation through Arp2/3. We found that Kv3.3 recruits Arp2/3 to the plasma membrane, resulting in formation of a relatively stable cortical actin filament network resistant to cytochalasin D that inhibits fast barbed end actin assembly. These Kv3.3-associated actin structures are required to prevent very rapid N-type channel inactivation during short depolarizations of the plasma membrane. The effects of Kv3.3 on the actin cytoskeleton are mediated by the binding of the cytoplasmic C terminus of Kv3.3 to Hax-1, an anti-apoptotic protein that regulates actin nucleation through Arp2/3. A human Kv3.3 mutation within a conserved proline-rich domain produces channels that bind Hax-1 but are impaired in recruiting Arp2/3 to the plasma membrane, resulting in growth cones with deficient actin veils in stem cell-derived neurons
    corecore