58 research outputs found

    Phase I study of bortezomib combined with chemotherapy in children with relapsed childhood acute lymphoblastic leukemia (ALL): A report from the therapeutic advances in childhood leukemia (TACL) consortium

    Full text link
    Background Outcomes remain poor for children after relapse of acute lymphoblastic leukemia (ALL), especially after early marrow relapse. Bortezomib is a proteasome inhibitor with in vitro synergy with corticosteroids and clinical activity in human lymphoid malignancies. Procedure This is a Phase I study of escalating doses bortezomib administered days 1, 4, 8, and 11, added to 4-drug induction chemotherapy with vincristine, dexamethasone, pegylated L -asparaginase, and doxorubicin (VXLD) in children with relapsed ALL. Results Ten patients were enrolled, five in first marrow relapse, and five in second relapse. Four patients were enrolled at dose level 1 (bortezomib 1 mg/m 2 ). One patient was not evaluable for toxicity because of omitted dexamethasone doses. No dose-limiting toxicity (DLT) was observed. Six patients were enrolled at dose level 2 (bortezomib 1.3 mg/m 2 ). One patient had dose-limiting hypophosphatemia and rhabdomyolysis after 1 dose of bortezomib, and died from a diffuse zygomyces infection on day 17. Five additional patients were enrolled with no subsequent DLTs. As planned, no further dose escalation was pursued. The regimen had predictable toxicity related to the chemotherapy drugs. Two patients had mild peripheral neuropathy (grades 1 and 2). Six of nine evaluable patients (67%) achieved a complete response (CR), and one had a bone marrow CR with persistent central nervous system leukemia. Conclusions The combination of bortezomib (1.3 mg/m 2 ) with VXLD is active with acceptable toxicity in pretreated pediatric patients with relapsed ALL. We are expanding the 1.3 mg/m 2 cohort for a phase II estimate of response. Study registered at ClinicalTrials.gov ( http://clinicaltrials.gov/ct2/show/NCT00440726 ). Pediatr Blood Cancer 2010;55:254–259. © 2010 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77437/1/22456_ftp.pd

    Methotrexate and asparaginase: not so simple

    No full text

    ALL and osteonecrosis

    No full text

    High resolution melting curve analysis, a rapid and affordable method for mutation analysis in childhood acute myeloid leukemia

    Get PDF
    Background: Molecular genetic alterations with prognostic significance have been described in childhood acute myeloid leukemia (AML). The aim of this study was to establish cost-effective techniques to detect mutations of FMS-like tyrosine kinase 3 (FLT3), Nucleophosmin 1 (NPM1), and a partial tandem duplication within the mixed lineage leukemia (MLL-PTD) genes in childhood AML. Procedure: Ninety-nine children with newly diagnosed AML were included in this study. We developed a fluoresent dye SYTO-82 based high resolution melting curve (HRM) anaylsis to detect FLT3 internal tandem duplication (FLT3-ITD), FLT3 tyrosine kinase domain (FLT3-TKD) and NPM1 mutations. MLL-PTD was screened by real-time quantitative PCR. Results: The HRM methodology correlated well with gold standard Sanger sequencing with less cost. Among the 99 patients studied, the FLT3-ITD mutation was associated with significantly worse event free survival (EFS). Patients with the NPM1 mutation had significantly better EFS and overall survival. However, HRM was not sensitive enough for minimal residual disease monitoring. Conclusions: HRM was a rapid and efficient method for screening of FLT3 and NPM1 gene mutations. It was both affordable and accurate, especially in resource underprivileged regions. Our results indicated that HRM could be a useful clinical tool for rapid and cost effective screening of the FLT3 and NPM1 mutations in AML patients
    • …
    corecore