22 research outputs found

    Multisymplectic variational integrators and space/time symplecticity

    No full text
    International audienceMultisymplectic variational integrators are structure preserving numerical schemes especially designed for PDEs derived from covariant spacetime Hamilton principles. The goal of this paper is to study the properties of the temporal and spatial discrete evolution maps obtained from a multisymplectic numerical scheme. Our study focuses on a (1+1)-dimensional spacetime discretized by triangles, but our approach carries over naturally to more general cases. In the case of Lie group symmetries, we explore the links between the discrete Noether theorems associated to the multisymplectic spacetime discretization and to the temporal and spatial discrete evolution maps, and emphasize the role of boundary conditions. We also consider in detail the case of multisymplectic integrators on Lie groups. Our results are illustrated with the numerical example of a geometrically exact beam model

    Lagrange-Poincare field equations

    Get PDF
    The Lagrange-Poincare equations of classical mechanics are cast into a field theoretic context together with their associated constrained variational principle. An integrability/reconstruction condition is established that relates solutions of the original problem with those of the reduced problem. The Kelvin-Noether theorem is formulated in this context. Applications to the isoperimetric problem, the Skyrme model for meson interaction, metamorphosis image dynamics, and molecular strands illustrate various aspects of the theory.Comment: Submitted to Journal of Geometry and Physics, 45 pages, 1 figur

    Poisson reduction and the Hamiltonian structure of the Euler-Yang-Mills equations

    Get PDF
    The problem treated here is to find the Hamiltonian structure for an ideal gauge-charged fluid. Using a Kaluza-Klein point of view, we obtain the non-canonical Poisson bracket and the motion equations by a Poisson reduction involving the automorphism group of a principal bundle

    Reduced Lagrangian and Hamiltonian formulations of Euler-Yang-Mills fluids

    Get PDF
    The Lagrangian and Hamiltonian structures for an ideal gauge-charged fluid are determined. Using a Kaluza-Klein point of view, the equations of motion are obtained by Lagrangian and Poisson reductions associated to the automorphism group of a principal bundle. As a consequence of the Lagrangian approach, a Kelvin-Noether theorem is obtained. The Hamiltonian formulation determines a non-canonical Poisson bracket associated to these equations

    Clebsch Variational Principles in Field Theories and Singular Solutions of Covariant Epdiff Equations

    No full text
    International audienceThis paper introduces and studies a field theoretic analogue of the Clebsch variational principle of classical mechanics. This principle yields an alternative derivation of the covariant Euler-Poincare equations that naturally includes covariant Clebsch variables via multisymplectic momentum maps. In the case of diffeomorphism groups, this approach gives a new interpretation of recently derived singular peakon solutions of Diff(R)-strand equations, and allows for the construction of singular solutions (such as filaments or sheets) for a more general class of equations, called covariant EPDiff equations. The relation between the covariant Clebsch principle and other variational principles arising in mechanics and field theories, such as Hamilton Pontryagin principles, is explained through the introduction of a new class of covariant Pontryagin variational principles in field theories

    Unified Discrete Multisymplectic Lagrangian Formulation for Hyperelastic Solids and Barotropic Fluids

    No full text
    We present a geometric variational discretization of nonlinear elasticity in 2D and 3D in the Lagrangian description. A main step in our construction is the definition of discrete deformation gradients and discrete Cauchy-Green deformation tensors, which allows for the development of a general discrete geometric setting for frame indifferent isotropic hyperelastic models. The resulting discrete framework is in perfect adequacy with the multisymplectic discretization of fluids proposed earlier by the authors. Thanks to the unified discrete setting, a geometric variational discretization can be developed for the coupled dynamics of a fluid impacting and flowing on the surface of an hyperelastic body. The variational treatment allows for a natural inclusion of incompressibility and impenetrability constraints via appropriate penalty terms. We test the resulting integrators in 2D and 3D with the case of a barotropic fluid flowing on incompressible rubber-like nonlinear models

    Madelung transform and probability densities in hybrid classical-quantum dynamics

    No full text
    This paper extends the Madelung-Bohm formulation of quantum mechanics to describe the time-reversible interaction of classical and quantum systems. The symplectic geometry of the Madelung transform leads to identifying hybrid classical-quantum Lagrangian paths extending the Bohmian trajectories from standard quantum theory. As the classical symplectic form is no longer preserved, the nontrivial evolution of the Poincaré integral is presented explicitly. Nevertheless, the classical phase-space components of the hybrid Bohmian trajectory identify a Hamiltonian flow parameterized by the quantum coordinate and this flow is associated to the motion of the classical subsystem. In addition, the continuity equation of the joint classical-quantum density is presented explicitly. While the von Neumann density operator of the quantum subsystem is always positive-definite by construction, the hybrid density is generally allowed to be unsigned. However, the paper concludes by presenting an infinite family of hybrid Hamiltonians whose corresponding evolution preserves the sign of the probability density for the classical subsystem
    corecore