5 research outputs found

    First crystal structures of 1-deoxy-D-xylulose 5-phosphate synthase (DXPS) from Mycobacterium tuberculosis indicate a distinct mechanism of intermediate stabilization

    Get PDF
    The development of drug resistance by Mycobacterium tuberculosis and other pathogenic bacteria emphasizes the need for new antibiotics. Unlike animals, most bacteria synthesize isoprenoid precursors through the MEP pathway. 1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) catalyzes the frst reaction of the MEP pathway and is an attractive target for the development of new antibiotics. We report here the successful use of a loop truncation to crystallize and solve the frst DXPS structures of a pathogen, namely M. tuberculosis (MtDXPS). The main diference found to other DXPS structures is in the active site where a highly coordinated water was found, showing a new mechanism for the enamine-intermediate stabilization. Unlike other DXPS structures, a ā€œfork-likeā€ motif could be identifed in the enamine structure, using a diferent residue for the interaction with the cofactor, potentially leading to a decrease in the stability of the intermediate. In addition, electron density suggesting a phosphate group could be found close to the active site, provides new evidence for the D-GAP binding site. These results provide the opportunity to improve or develop new inhibitors specifc for MtDXPS through structure-based drug design

    First crystal structures of 1-deoxy-D-xylulose 5-phosphate synthase (DXPS) from Mycobacterium tuberculosis indicate a distinct mechanism of intermediate stabilization

    Get PDF
    The development of drug resistance by Mycobacterium tuberculosis and other pathogenic bacteria emphasizes the need for new antibiotics. Unlike animals, most bacteria synthesize isoprenoid precursors through the MEP pathway. 1-Deoxy-D-xylulose 5-phosphate synthase (DXPS) catalyzes the first reaction of the MEP pathway and is an attractive target for the development of new antibiotics. We report here the successful use of a loop truncation to crystallize and solve the first DXPS structures of a pathogen, namely M. tuberculosis (MtDXPS). The main difference found to other DXPS structures is in the active site where a highly coordinated water was found, showing a new mechanism for the enamine-intermediate stabilization. Unlike other DXPS structures, a "fork-like" motif could be identified in the enamine structure, using a different residue for the interaction with the cofactor, potentially leading to a decrease in the stability of the intermediate. In addition, electron density suggesting a phosphate group could be found close to the active site, provides new evidence for the D-GAP binding site. These results provide the opportunity to improve or develop new inhibitors specific for MtDXPS through structure-based drug design

    Quantum Machine Learning for Drug Discovery

    No full text
    The growing public and private datasets focused on small molecules screened against biological targets or whole organisms 1 provides a wealth of drug discovery relevant data. Increasingly this is used to create machine learning models which can be used for enabling target-based design 2-4, predict on- or off-target effects and create scoring functions 5,6. This is matched by the availability of machine learning algorithms such as Support Vector Machines (SVM) and Deep Neural Networks (DNN) that are computationally expensive to perform on very large datasets and thousands of molecular descriptors. Quantum computer (QC) algorithms have been proposed to offer an approach to accelerate quantum machine learning over classical computer (CC) algorithms, however with significant limitations. In the case of cheminformatics, one of the challenges to overcome is the need for compression of large numbers of molecular descriptors for use on QC. Here we show how to achieve compression with datasets using hundreds of molecules (SARS-CoV-2) to hundreds of thousands (whole cell screening datasets for plague and M. tuberculosis) with SVM and data re-uploading classifier (a DNN equivalent algorithm) on a QC benchmarked against CC and hybrid approaches. This illustrates a quantum advantage for drug discovery to build upon in future.</p

    First crystal structures of 1-deoxy-D-xylulose 5-phosphate synthase (DXPS) from Mycobacterium tuberculosis indicate a distinct mechanism of intermediate stabilization.

    No full text
    The development of drug resistance by Mycobacterium tuberculosis and other pathogenic bacteria emphasizes the need for new antibiotics. Unlike animals, most bacteria synthesize isoprenoid precursors through the MEP pathway. 1-Deoxy-D-xylulose 5-phosphate synthase (DXPS) catalyzes the first reaction of the MEP pathway and is an attractive target for the development of new antibiotics. We report here the successful use of a loop truncation to crystallize and solve the first DXPS structures of a pathogen, namely M. tuberculosis (MtDXPS). The main difference found to other DXPS structures is in the active site where a highly coordinated water was found, showing a new mechanism for the enamine-intermediate stabilization. Unlike other DXPS structures, a 'fork-like' motif could be identified in the enamine structure, using a different residue for the interaction with the cofactor, potentially leading to a decrease in the stability of the intermediate. In addition, electron density suggesting a phosphate group could be found close to the active site, provides new evidence for the D-GAP binding site. These results provide the opportunity to improve or develop new inhibitors specific for MtDXPS through structure-based drug design

    SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids

    No full text
    This work was supported by grants of the German Research Foundation (DFG: KR 4073/11-1; SFBTRR219, 322900939; and CRU344, 428857858, and CRU5011 InteraKD 445703531), a grant of the European Research Council (ERC-StG 677448), the Federal Ministry of Research and Education (BMBF NUM-COVID19, Organo-Strat 01KX2021), the Dutch Kidney Foundation (DKF) TASK FORCE consortium (CP1805), the Else Kroener Fresenius Foundation (2017_A144), and the ERA-CVD MENDAGE consortium (BMBF 01KL1907) all to R.K.; DFG (CRU 344, Z to I.G.C and CRU344 P2 to R.K.S.); and the BMBF eMed Consortium Fibromap (to V.G.P, R.K., R.K.S., and I.G.C.). R.K.S received support from the KWF Kankerbestrijding (11031/2017ā€“1, Bas Mulder Award) and a grant by the ERC (deFiber; ERC-StG 757339). J.J. is supported by the Netherlands Organisation for Scientific Research (NWO Veni grant no: 091 501 61 81 01 36) and the DKF (grant no. 19OK005). B.S. is supported by the DKF (grant: 14A3D104) and the NWO (VIDI grant: 016.156.363). R.P.V.R. and G.J.O. are supported by the NWO VICI (grant: 16.VICI.170.090). P.B. is supported by the BMBF (DEFEAT PANDEMIcs, 01KX2021), the Federal Ministry of Health (German Registry for COVID-19 Autopsies-DeRegCOVID, www.DeRegCOVID.ukaachen.de; ZMVI1-2520COR201), and the German Research Foundation (DFG; SFB/TRR219 Project-IDs 322900939 and 454024652). S.D. received DFG support (DJ100/1-1) as well as support from VGP and TBH (SFB1192). M.d.B,R.R., N.S., and A.A. are supported by an ERC Advanced Investigator grant (H2020-ERC-2017-ADV-788982-COLMIN) to N.S. A.A. is supported by the NWO (VI.Veni.192.094). We thank Saskia de Wildt, Jeanne Pertijs (Radboudumc, Department of Pharmacology), and Robert M. Verdijk (Erasmus Medical Center, Department of Pathology) for providing tissue controls (Erasmus MC Tissue Bank) and Christian Drosten (ChariteĀ“ Universitatsmedizin Berlin, Institute of ā‚¬ Virology) and Bart Haagmans (Erasmus Medical Center, Rotterdam) for providing the SARS-CoV-2 isolate. We thank Kioa L. Wijnsma (Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Childrenā€™s Hospital, Radboud University Medical Center) for support with statistical analysis regarding the COVID-19 patient cohort.Peer reviewedPublisher PD
    corecore