3 research outputs found

    Point interactions in a strip

    Full text link
    We study the behavior of a quantum particle confined to a hard--wall strip of a constant width in which there is a finite number N N of point perturbations. Constructing the resolvent of the corresponding Hamiltonian by means of Krein's formula, we analyze its spectral and scattering properties. The bound state--problem is analogous to that of point interactions in the plane: since a two--dimensional point interaction is never repulsive, there are m m discrete eigenvalues, 1≤m≤N 1\le m\le N , the lowest of which is nondegenerate. On the other hand, due to the presence of the boundary the point interactions give rise to infinite series of resonances; if the coupling is weak they approach the thresholds of higher transverse modes. We derive also spectral and scattering properties for point perturbations in several related models: a cylindrical surface, both of a finite and infinite heigth, threaded by a magnetic flux, and a straight strip which supports a potential independent of the transverse coordinate. As for strips with an infinite number of point perturbations, we restrict ourselves to the situation when the latter are arranged periodically; we show that in distinction to the case of a point--perturbation array in the plane, the spectrum may exhibit any finite number of gaps. Finally, we study numerically conductance fluctuations in case of random point perturbations.Comment: a LaTeX file, 38 pages, to appear in Ann. Phys.; 12 figures available at request from [email protected]

    Band spectra of rectangular graph superlattices

    Full text link
    We consider rectangular graph superlattices of sides l1, l2 with the wavefunction coupling at the junctions either of the delta type, when they are continuous and the sum of their derivatives is proportional to the common value at the junction with a coupling constant alpha, or the "delta-prime-S" type with the roles of functions and derivatives reversed; the latter corresponds to the situations where the junctions are realized by complicated geometric scatterers. We show that the band spectra have a hidden fractal structure with respect to the ratio theta := l1/l2. If the latter is an irrational badly approximable by rationals, delta lattices have no gaps in the weak-coupling case. We show that there is a quantization for the asymptotic critical values of alpha at which new gap series open, and explain it in terms of number-theoretic properties of theta. We also show how the irregularity is manifested in terms of Fermi-surface dependence on energy, and possible localization properties under influence of an external electric field. KEYWORDS: Schroedinger operators, graphs, band spectra, fractals, quasiperiodic systems, number-theoretic properties, contact interactions, delta coupling, delta-prime coupling.Comment: 16 pages, LaTe
    corecore