research

Point interactions in a strip

Abstract

We study the behavior of a quantum particle confined to a hard--wall strip of a constant width in which there is a finite number N N of point perturbations. Constructing the resolvent of the corresponding Hamiltonian by means of Krein's formula, we analyze its spectral and scattering properties. The bound state--problem is analogous to that of point interactions in the plane: since a two--dimensional point interaction is never repulsive, there are m m discrete eigenvalues, 1mN 1\le m\le N , the lowest of which is nondegenerate. On the other hand, due to the presence of the boundary the point interactions give rise to infinite series of resonances; if the coupling is weak they approach the thresholds of higher transverse modes. We derive also spectral and scattering properties for point perturbations in several related models: a cylindrical surface, both of a finite and infinite heigth, threaded by a magnetic flux, and a straight strip which supports a potential independent of the transverse coordinate. As for strips with an infinite number of point perturbations, we restrict ourselves to the situation when the latter are arranged periodically; we show that in distinction to the case of a point--perturbation array in the plane, the spectrum may exhibit any finite number of gaps. Finally, we study numerically conductance fluctuations in case of random point perturbations.Comment: a LaTeX file, 38 pages, to appear in Ann. Phys.; 12 figures available at request from [email protected]

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 14/03/2019