88 research outputs found

    Timed Parity Games: Complexity and Robustness

    Get PDF
    We consider two-player games played in real time on game structures with clocks where the objectives of players are described using parity conditions. The games are \emph{concurrent} in that at each turn, both players independently propose a time delay and an action, and the action with the shorter delay is chosen. To prevent a player from winning by blocking time, we restrict each player to play strategies that ensure that the player cannot be responsible for causing a zeno run. First, we present an efficient reduction of these games to \emph{turn-based} (i.e., not concurrent) \emph{finite-state} (i.e., untimed) parity games. Our reduction improves the best known complexity for solving timed parity games. Moreover, the rich class of algorithms for classical parity games can now be applied to timed parity games. The states of the resulting game are based on clock regions of the original game, and the state space of the finite game is linear in the size of the region graph. Second, we consider two restricted classes of strategies for the player that represents the controller in a real-time synthesis problem, namely, \emph{limit-robust} and \emph{bounded-robust} winning strategies. Using a limit-robust winning strategy, the controller cannot choose an exact real-valued time delay but must allow for some nonzero jitter in each of its actions. If there is a given lower bound on the jitter, then the strategy is bounded-robust winning. We show that exact strategies are more powerful than limit-robust strategies, which are more powerful than bounded-robust winning strategies for any bound. For both kinds of robust strategies, we present efficient reductions to standard timed automaton games. These reductions provide algorithms for the synthesis of robust real-time controllers

    Analysis of Transaction Management Performance

    Get PDF
    There is currently much interest in incorporating transactions into both operating systems and general purpose programming languages. This paper provides a detailed examination of the design and performance of the“¢ transaction manager of the Camelot system. Camelot is a transaction facility that provides a rich model of transactions intended to support a wide variety of general-purpose applications. The transaction manager's principal function is to execute the protocols that ensure atomicity. The conclusions of this study are: a simple optimization to two-phase commit reduces logging activity of distributed transactions; non-blocking commit is practical for some applications; multithreaded design improves throughput provided that log batching is used; multi-casting reduces the variance of distributed commit protocols in a LAN environment; and the performance of transaction mechanisms such as Camelot depend heavily upon kernel performance

    Simulation of Main Memory Database Recovery

    Get PDF
    In a main memory database (MMDB), the primary copy of the database may reside permanently in a volatile memory. When a system failure occurs, the database must be reloaded efficiently from archive memory into main memory. This paper presents four different reload schemes and the simulation models constructed to compare the algorithms. Simulation results indicate that the reload scheme based on freguency of data access gives the best overall performance in terms of transaction response time and system throughput.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Contents Letter from the Editor 1 Varieties of Concurrency Control in IMS/VS Fast Path

    No full text
    JUNE1985 VOL.8 NO.2 a quarterly bulletin of the IEEE computer societ

    Storing and Processing Massive Trajectory Data on SAP HANA

    No full text

    Coordinating MultiTransaction Activities

    No full text
    Data processing applications must often execute collections of related transactions. We propose a model for structuring and coordinating these multi-transaction activities. The model includes mechanisms for communication between transactions, for compensating transactions after an activity has failed, for dynamic creation and binding of activities, and for checkpointing the progress of an activity
    • …
    corecore