62 research outputs found

    Global gauge anomalies in coset models of conformal field theory

    Full text link
    We study the occurrence of global gauge anomalies in the coset models of two-dimensional conformal field theory that are based on gauged WZW models. A complete classification of the non-anomalous theories for a wide family of gauged rigid adjoint or twisted-adjoint symmetries of WZW models is achieved with the help of Dynkin's classification of Lie subalgebras of simple Lie algebras.Comment: 25 page

    Anomalous Scaling in the N-Point Functions of Passive Scalar

    Full text link
    A recent analysis of the 4-point correlation function of the passive scalar advected by a time-decorrelated random flow is extended to the N-point case. It is shown that all stationary-state inertial-range correlations are dominated by homogeneous zero modes of singular operators describing their evolution. We compute analytically the zero modes governing the N-point structure functions and the anomalous dimensions corresponding to them to the linear order in the scaling exponent of the 2-point function of the advecting velocity field. The implications of these calculations for the dissipation correlations are discussed.Comment: 16 pages, latex fil

    Coordinate-invariant Path Integral Methods in Conformal Field Theory

    Full text link
    We present a coordinate-invariant approach, based on a Pauli-Villars measure, to the definition of the path integral in two-dimensional conformal field theory. We discuss some advantages of this approach compared to the operator formalism and alternative path integral approaches. We show that our path integral measure is invariant under conformal transformations and field reparametrizations, in contrast to the measure used in the Fujikawa calculation, and we show the agreement, despite different origins, of the conformal anomaly in the two approaches. The natural energy-momentum in the Pauli-Villars approach is a true coordinate-invariant tensor quantity, and we discuss its nontrivial relationship to the corresponding non-tensor object arising in the operator formalism, thus providing a novel explanation within a path integral context for the anomalous Ward identities of the latter. We provide a direct calculation of the nontrivial contact terms arising in expectation values of certain energy-momentum products, and we use these to perform a simple consistency check confirming the validity of the change of variables formula for the path integral. Finally, we review the relationship between the conformal anomaly and the energy-momentum two-point functions in our formalism.Comment: Corrected minor typos. To appear in International Journal of Modern Physics

    The gauging of two-dimensional bosonic sigma models on world-sheets with defects

    Full text link
    We extend our analysis of the gauging of rigid symmetries in bosonic two-dimensional sigma models with Wess-Zumino terms in the action to the case of world-sheets with defects. A structure that permits a non-anomalous coupling of such sigma models to world-sheet gauge fields of arbitrary topology is analysed, together with obstructions to its existence, and the classification of its inequivalent choices.Comment: 94 pages, 1 figur

    WZW branes and gerbes

    Full text link
    We reconsider the role that bundle gerbes play in the formulation of the WZW model on closed and open surfaces. In particular, we show how an analysis of bundle gerbes on groups covered by SU(N) permits to determine the spectrum of symmetric branes in the boundary version of the WZW model with such groups as the target. We also describe a simple relation between the open string amplitudes in the WZW models based on simply connected groups and in their simple-current orbifolds.Comment: latex, 4 figures incorporate

    Operator realization of the SU(2) WZNW model

    Get PDF
    Decoupling the chiral dynamics in the canonical approach to the WZNW model requires an extended phase space that includes left and right monodromy variables. Earlier work on the subject, which traced back the quantum qroup symmetry of the model to the Lie-Poisson symmetry of the chiral symplectic form, left some open questions: - How to reconcile the monodromy invariance of the local 2D group valued field (i.e., equality of the left and right monodromies) with the fact that the latter obey different exchange relations? - What is the status of the quantum group symmetry in the 2D theory in which the chiral fields commute? - Is there a consistent operator formalism in the chiral and in the extended 2D theory in the continuum limit? We propose a constructive affirmative answer to these questions for G=SU(2) by presenting the chiral quantum fields as sums of chiral vertex operators and q-Bose creation and annihilation operators.Comment: 18 pages, LATE

    Worldsheet Covariant Path Integral Quantization of Strings

    Get PDF
    We discuss a covariant functional integral approach to the quantization of the bosonic string. In contrast to approaches relying on non-covariant operator regularizations, interesting operators here are true tensor objects with classical transformation laws, even on target spaces where the theory has a Weyl anomaly. Since no implicit non-covariant gauge choices are involved in the definition of the operators, the anomaly is clearly separated from the issue of operator renormalization and can be understood in isolation, instead of infecting the latter as in other approaches. Our method is of wider applicability to covariant theories that are not Weyl invariant, but where covariant tensor operators are desired. After constructing covariantly regularized vertex operators, we define a class of background-independent path integral measures suitable for string quantization. We show how gauge invariance of the path integral implies the usual physical state conditions in a very conceptually clean way. We then discuss the construction of the BRST action from first principles, obtaining some interesting caveats relating to its general covariance. In our approach, the expected BRST related anomalies are encoded somewhat differently from other approaches. We conclude with an unusual but amusing derivation of the value D=26D= 26 of the critical dimension.Comment: 64 pages, minor edits in expositio

    Sticky Particles and Stochastic Flows

    Full text link
    Gaw\c{e}dzki and Horvai have studied a model for the motion of particles carried in a turbulent fluid and shown that in a limiting regime with low levels of viscosity and molecular diffusivity, pairs of particles exhibit the phenomena of stickiness when they meet. In this paper we characterise the motion of an arbitrary number of particles in a simplified version of their model
    corecore