3,034 research outputs found

    Dynamic boundary conditions for membranes whose surface energy depends on the mean and Gaussian curvatures

    Full text link
    Membranes are an important subject of study in physical chemistry and biology. They can be considered as material surfaces with a surface energy depending on the curvature tensor. Usually, mathematical models developed in the literature consider the dependence of surface energy only on mean curvature with an added linear term for Gauss curvature. Therefore, for closed surfaces the Gauss curvature term can be eliminated because of the Gauss-Bonnet theorem. In [18], the dependence on the mean and Gaussian curvatures was considered in statics. The authors derived the shape equation as well as two scalar boundary conditions on the contact line. In this paper-thanks to the principle of virtual working-the equations of motion and boundary conditions governing the fluid membranes subject to general dynamical bending are derived. We obtain the dynamic 'shape equa-tion' (equation for the membrane surface) and the dynamic conditions on the contact line generalizing the classical Young-Dupr{\'e} condition.Comment: Mathematics and Mechanics of Complex Systems, mdp, In pres

    Hamilton's Principle and Rankine-Hugoniot Conditions for General Motions of Mixtures

    Full text link
    In previous papers, we have presented hyperbolic governing equations and jump conditions for barotropic fluid mixtures. Now we extend our results to the most general case of two-fluid conservative mixtures taking into account the entropies of components. We obtain governing equations for each component of the medium. This is not a system of conservation laws. Nevertheless, using Hamilton's principle we are able to obtain a complete set of Rankine-Hugoniot conditions. In particular, for the gas dynamics they coincide with classical jump conditions of conservation of momentum and energy. For the two-fluid case, the jump relations do not involve the conservation of the total momentum and the total energy.Comment: Extended version of meccanica 34: 39-47, 199
    corecore